共查询到20条相似文献,搜索用时 15 毫秒
1.
Travis J. Mitchell Camila Zugarramurdi J. Fernando Olivera Craig Gatto Pablo Artigas 《Biophysical journal》2014
The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. 相似文献
2.
Travis?J. Mitchell Camila Zugarramurdi J.?Fernando Olivera Craig Gatto Pablo Artigas 《Biophysical journal》2014,106(12):2555-2565
The Na/K pump hydrolyzes ATP to export three intracellular Na (Nai) as it imports two extracellular K (Ko) across animal plasma membranes. Within the protein, two ion-binding sites (sites I and II) can reciprocally bind Na or K, but a third site (site III) exclusively binds Na in a voltage-dependent fashion. In the absence of Nao and Ko, the pump passively imports protons, generating an inward current (IH). To elucidate the mechanisms of IH, we used voltage-clamp techniques to investigate the [H]o, [Na]o, and voltage dependence of IH in Na/K pumps from ventricular myocytes and in ouabain-resistant pumps expressed in Xenopus oocytes. Lowering pHo revealed that Ho both activates IH (in a voltage-dependent manner) and inhibits it (in a voltage-independent manner) by binding to different sites. Nao effects depend on pHo; at pHo where no Ho inhibition is observed, Nao inhibits IH at all concentrations, but when applied at pHo that inhibits pump-mediated current, low [Na]o activates IH and high [Na]o inhibits it. Our results demonstrate that IH is a property inherent to Na/K pumps, not linked to the oocyte expression environment, explains differences in the characteristics of IH previously reported in the literature, and supports a model in which 1), protons leak through site III; 2), binding of two Na or two protons to sites I and II inhibits proton transport; and 3), pumps with mixed Na/proton occupancy of sites I and II remain permeable to protons. 相似文献
3.
目的:研究有髓轴突横断损伤后郎飞结区钠通道聚集状态的变化.方法:用雪旺细胞-背根神经元髓鞘化共培养系统复制周围神经髓鞘形成和郎飞结发育,于髓鞘化培养基中共培养第14天用前房角切开刀造成有髓轴突横断损伤,在损伤后1、2、3、4、5、6、7、14天进行髓鞘碱性蛋白和钠通道免疫荧光染色,损伤前共培养作为对照.利用SPOT图像分析软件测量钠通道聚集簇的直径、长度和直径/长度比.结果:损伤前钠通道蛋白在有髓轴突郎飞结区形成直径/长度比略大于1的聚集簇;有髓轴灾横断损伤后钠通道蛋白沿轴突纵向扩散,钠通道聚集簇的直径/长度比逐渐减小,损伤后第14天已无法检测到钠通道表达.损伤区出现节段性脱髓鞘.结论:轴突横断损伤可造成钠通道聚集簇扩散、消失,导致郎飞结结构破坏. 相似文献
4.
Isoform-Specific Function and Distribution of Na/K Pumps in the Frog Lens Epithelium 总被引:2,自引:1,他引:2
Epithelial cells from the anterior and equatorial surfaces of the frog lens were isolated and used the same day for studies
of the Na/K ATPase. RNase protection assays showed that all cells express α1- and α2-isoforms of the Na/K pump but not the α3-isoform, however the α2-isoform dominates in anterior cells whereas the α1-isoform dominates in equatorial cells. The whole cell patch-clamp technique was used to record functional properties of the
Na/K pump current (I
P
), defined as the current specifically inhibited by dihydro-ouabain (DHO). DHO-I
P
blockade data indicate the α1-isoform has a dissociation constant of 100 μm DHO whereas for the α2-isoform it is 0.75 μm DHO. Both α1- and α2-isoforms are half maximally activated at an intracellular Na+-concentration of 9 mm. The α1-isoform is half maximally activated at an extracellular K+-concentration of 3.9 mm whereas for the α2-isoform, half maximal activation occurs at 0.4 mm. Lastly, transport by the α1-isoform is inhibited by a drop in extracellular pH, which does not affect transport by the α2-isoform. Under normal physiological conditions, I
P
in equatorial cells is approximately 0.23 μA/μF, and in anterior cells it is about 0.14 μA/μF. These current densities refer
to the area of cell membrane assuming a capacitance of around 1 μF/cm2. Because cell size and geometry are different at the equatorial vs. anterior surface of the intact lens, we estimate Na/K pump current density per area of lens surface to be around 10 μA/cm2 at the equator vs. 0.5 μA/cm2 at the anterior pole.
Received: 17 May 2000/Revised: 11 August 2000 相似文献
5.
Rakowski RF Artigas P Palma F Holmgren M De Weer P Gadsby DC 《The Journal of general physiology》2007,130(1):41-54
Palytoxin binds to Na(+)/K(+) pumps in the plasma membrane of animal cells and opens an electrodiffusive cation pathway through the pumps. We investigated properties of the palytoxin-opened channels by recording macroscopic and microscopic currents in cell bodies of neurons from the giant fiber lobe, and by simultaneously measuring net current and (22)Na(+) efflux in voltage-clamped, internally dialyzed giant axons of the squid Loligo pealei. The conductance of single palytoxin-bound "pump-channels" in outside-out patches was approximately 7 pS in symmetrical 500 mM [Na(+)], comparable to findings in other cells. In these high-[Na(+)], K(+)-free solutions, with 5 mM cytoplasmic [ATP], the K(0.5) for palytoxin action was approximately 70 pM. The pump-channels were approximately 40-50 times less permeable to N-methyl-d-glucamine (NMG(+)) than to Na(+). The reversal potential of palytoxin-elicited current under biionic conditions, with the same concentration of a different permeant cation on each side of the membrane, was independent of the concentration of those ions over the range 55-550 mM. In giant axons, the Ussing flux ratio exponent (n') for Na(+) movements through palytoxin-bound pump-channels, over a 100-400 mM range of external [Na(+)] and 0 to -40 mV range of membrane potentials, averaged 1.05 +/- 0.02 (n = 28). These findings are consistent with occupancy of palytoxin-bound Na(+)/K(+) pump-channels either by a single Na(+) ion or by two Na(+) ions as might be anticipated from other work; idiosyncratic constraints are needed if the two Na(+) ions occupy a single-file pore, but not if they occupy side-by-side binding sites, as observed in related structures, and if only one of the sites is readily accessible from both sides of the membrane. 相似文献
6.
It has been previously demonstrated by our group that our specifically designed synchronization modulation electric field
can dynamically entrain the Na/K ATPase molecules, effectively accelerating the pumping action of these molecules. The ATPase
molecules are first synchronized by the field, and subsequently their pumping rates are gradually modulated in a stepwise
pattern to progressively higher and higher levels. Here, we present results obtained on application of the field to intact
twitch skeletal muscle fibers. The ionic concentration gradient across the cell membrane was monitored, with the membrane
potential extrapolated using a slow fluorescent probe with a confocal microimaging technique. The applied synchronization-modulation
electric field is able to slowly but consistently increase the ionic concentration gradient across the membrane and, hence,
hyperpolarize the membrane potential. All of these results were fully eliminated if ouabain was applied to the bathing solution,
indicating a correlation with the action of the Na/K pump molecules. These results in combination with our previous results
into the entrainment of the pump molecules show that the synchronization-modulation electric field-induced activation of the
Na/K pump functions can effectively increase the ionic concentration gradient and the membrane potential. 相似文献
7.
Voltage-gated sodium (Nav) channels and their Na+/K+ selectivity are of great importance in the mammalian neuronal signaling. According to mutational analysis, the Na+/K+ selectivity in mammalian Nav channels is mainly determined by the Lys and Asp/Glu residues located at the constriction site within the selectivity filter. Despite successful molecular dynamics simulations conducted on the prokaryotic Nav channels, the lack of Lys at the constriction site of prokaryotic Nav channels limits how much can be learned about the Na+/K+ selectivity in mammalian Nav channels. In this work, we modeled the mammalian Nav channel by mutating the key residues at the constriction site in a prokaryotic Nav channel (NavRh) to its mammalian counterpart. By simulating the mutant structure, we found that the Na+ preference in mammalian Nav channels is collaboratively achieved by the deselection from Lys and the selection from Asp/Glu within the constriction site. 相似文献
8.
David E. Goldman 《Biophysical journal》1964,4(3):167-188
A structural model is suggested for axon membranes consisting of a double layer of lipid and phospholipid molecules in which the polar ends of certain phospholipids change their orientation and combining properties under the influence of an electric field. The phosphate groups act as ion exchange “gates” for the control of ion flow through the membrane. Expressions are developed for the calculation of membrane current components as functions of time, potential, and ionic environment. Approximate solutions show fairly good agreement with existing experimental data in a number of different respects such as steady-state current-voltage relations, the effect of calcium on steady-state current, potassium tracer flux ratios, initial current and rate of change of current, and the dependence of the time constants of current change on membrane potential. 相似文献
9.
Interaction of Tetraethylammonium Ion Derivatives with the Potassium Channels of Giant Axons 总被引:28,自引:35,他引:28
下载免费PDF全文

Clay M. Armstrong 《The Journal of general physiology》1971,58(4):413-437
A number of compounds related to TEA+ (tetraethylammoniumion) were injected into squid axons and their effects on gK (the potassium conductance) were determined. In most of these ions a quaternary nitrogen is surrounded by three ethyl groups and a fourth group that is very hydrophobic. Several of the ions cause inactivation of gK, a type of ionic gating that is not normally seen in squid axon; i.e., after depolarization gK increases and then spontaneously decreases to a small fraction of its peak value even though the depolarization is maintained. Observations on the mechanism of this gating show that (a) QA (quaternary ammonium) ions only enter K+ channels that have open activation gates (the normal permeability gates). (b) The activation gates of QA-occluded channels do not close readily. (c) Hyperpolarization helps to clear QA ions from the channels. (d) Raising the external K+ concentration also helps to clear QA ions from the channels. Observations (c) and (d) strongly suggest that K+ ions traverse the membrane by way of pores, and they cannot be explained by the usual type of carrier model. The data suggest that a K+ pore has two distinct parts: a wide inner mouth that can accept a hydrated K+ ion or a TEA+-like ion, and a narrower portion that can accept a dehydrated or partially dehydrated K+ ion, but not TEA+. 相似文献
10.
Journal of Evolutionary Biochemistry and Physiology - Sodium and calcium channels play fundamental roles in the physiology of excitable cells. These channels are targets for various natural toxins,... 相似文献
11.
12.
Generations of scientists have been captivated by ion channels and how they control the workings of the cell by admitting ions from one side of the cell membrane to the other. Elucidating the molecular determinants of ion conduction and selectivity are two of the most fundamental issues in the field of biophysics. Combined with ongoing progress in structural studies, modeling and simulation have been an integral part of the development of the field. As of this writing, the relentless growth in computational power, the development of new algorithms to tackle the so-called rare events, improved force-field parameters, and the concomitant increasing availability of membrane protein structures, allow simulations to contribute even further, providing more-complete models of ion conduction and selectivity in ion channels. In this report, we give an overview of the recent progress made by simulation studies on the understanding of ion permeation in selective and nonselective ion channels. 相似文献
13.
14.
Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K 总被引:4,自引:0,他引:4
下载免费PDF全文

《The Journal of general physiology》1994,104(4):693-710
The patch-clamp technique was used to study the properties and the density of conducting K and Na channels in the apical membrane of rat cortical collecting tubule. The predominant K channel observed in cell- attached patches (SK channels) had an outward single-channel conductance (with LiCl in the pipette) of 10 pS. The inward conductance (with KCl in the pipette) was 42 pS. The channel had a high open probability that increased with depolarization. Kinetic analysis indicated the presence of a single open state and two closed states. Increasing K intake by maintaining animals on a high K diet for 12-16 d increased the number of SK channels per patch by threefold (0.7- 2.0/patch) over control levels. In addition, conducting Na-selective channels, which were not observed in control animals, were seen at low density (0.5/patch). These channels had properties similar to those observed when the animals were on a low Na diet, except that the mean open probability (0.84) was higher. In other experiments, the whole- cell patch clamp technique was used to measure Na channel activity (as amiloride-sensitive current, INa) and Na pump activity (as ouabain- sensitive current, Ipump). In animals on a high K diet, INa was greater than in controls but much less than in rats on a low Na diet. Ipump was greater after K loading than in controls or Na-depleted animals. These K diet-dependent effects were not accompanied by a significant increase in plasma aldosterone concentrations. To further investigate the relationship between K channel activity and mineralocorticoids, rats were maintained on a low Na diet to increase endogenous aldosterone secretion. Under these conditions, no increase in SK channel density was observed, although there was a large increase in the number of Na channels (to 2.7/patch). Aldosterone was also administered exogenously through osmotic minipumps. As with the low Na diet, there was no change in the density of conducting SK channels, although Na channel activity was induced. These results suggest that SK channels, Na channels and Na/K pumps are regulated during changes in K intake by factors other than aldosterone. 相似文献
15.
Palytoxin binds to Na/K pumps to generate nonselective cation channels whose pore likely comprises at least part of the pump's ion translocation pathway. We systematically analyzed palytoxin's interactions with native human Na/K pumps in outside-out patches from HEK293 cells over a broad range of ionic and nucleotide conditions, and with or without cardiotonic steroids. With 5 mM internal (pipette) [MgATP], palytoxin activated the conductance with an apparent affinity that was highest for Na(+)-containing (K(+)-free) external and internal solutions, lowest for K(+)-containing (Na(+)-free) external and internal solutions, and intermediate for the mixed external Na(+)/internal K(+), and external K(+)/internal Na(+) conditions; with Na(+) solutions and MgATP, the mean dwell time of palytoxin on the Na/K pump was about one day. With Na(+) solutions, the apparent affinity for palytoxin action was low after equilibration of patches with nucleotide-free pipette solution. That apparent affinity was increased in two phases as the equilibrating [MgATP] was raised over the submicromolar, and submillimolar, ranges, but was increased by pipette MgAMPPNP in a single phase, over the submillimolar range; the apparent affinity at saturating [MgAMPPNP] remained approximately 30-fold lower than at saturating [MgATP]. After palytoxin washout, the conductance decay that reflects palytoxin unbinding was accelerated by cardiotonic steroid. When Na/K pumps were preincubated with cardiotonic steroid, subsequent activation of palytoxin-induced conductance was greatly slowed, even after washout of the cardiotonic steroid, but activation could still be accelerated by increasing palytoxin concentration. These results indicate that palytoxin and a cardiotonic steroid can simultaneously occupy the same Na/K pump, each destabilizing the other. The palytoxin-induced channels were permeable to several large organic cations, including N-methyl-d-glucamine(+), suggesting that the narrowest section of the pore must be approximately 7.5 A wide. Enhanced understanding of palytoxin action now allows its use for examining the structures and mechanisms of the gates that occlude/deocclude transported ions during the normal Na/K pump cycle. 相似文献
16.
F M Schuurmans Stekhoven H G Swarts J J de Pont S L Bonting 《Biochimica et biophysica acta》1986,855(3):375-382
Effects of various cations on the dephosphorylation of (Na+ + K+)-ATPase, phosphorylated by ATP in 50 mM imidazole buffer (pH 7.0) at 22 degrees C without added Na+, have been studied. The dephosphorylation in imidazole buffer without added K+ is extremely sensitive to K+-activation (Km K+ = 1 microM), less sensitive to Mg2+-activation (Km Mg2+ = 0.1 mM) and Na+-activation (Km Na+ = 63 mM). Imidazole and Na+ effectively inhibit K+-activated dephosphorylation in linear competitive fashion (Ki imidazole 7.5 mM, Ki Na+ 4.6 mM). The Ki for Na+ is independent of the imidazole concentration, indicating different and non-interacting inhibitory sites for Na+ and imidazole. Imidazole inhibits Mg2+-activated dephosphorylation just as effective as K+-activated dephosphorylation, as judged from the Ki values for imidazole in the two processes. Tris buffer and choline chloride, like imidazole, inhibit dephosphorylation in the presence of residual K+ (less than 1 microM), but less effectively in terms of I50 values and extent of inhibition. Tris inhibits to the same extent as choline. This indicates different inhibitory sites for Tris or choline and for imidazole. These findings indicate that high steady-state phosphorylation levels in Na+-free imidazole buffer are due to the induction of a phosphorylating enzyme conformation and to the inhibition of (K+ + Mg2+)-stimulated dephosphorylation. 相似文献
17.
Yoshinori Marunaka 《The Journal of membrane biology》1988,101(1):19-31
Summary To clarify the dependency of the Na/K coupling of the Na,K-pump on internal Na and external K concentrations in skeletal muscle, the ouabain-induced change in membrane potential, the ouabain-induced change in Na efflux and the membrane resistance were measured at various internal Na and external K concentrations in bullfrog sartorius muscle.Upon raising the internal Na concentration from 6 mmol/kg muscle water to 20 mmol/kg muscle water, the magnitude of the ouabain-induced change in membrane potential increased about eightfold and the magnitude of the ouabain-induced change in Na efflux increased about fivefold while the membrane resistance was not significantly changed. As the external K concentration increased from 1 to 10mm, the magnitude of the ouabain-induced change in membrane potential decreased (1/5.5 fold), while the magnitude of the ouabain-induced change in Na efflux increased (about 1.5-fold). The membrane resistance decreased upon raising the external K concentration from 1 to 10mm (1/2-fold). These observations imply that the values of the Na/K coupling of the Na,K-pump increases upon raising the internal Na concentration and decreases upon raising the external K concentration. 相似文献
18.
19.
Fernanda Moura Vargas Dias Rogério Faustino Ribeiro Júnior Aurélia Araújo Fernandes Jonaina Fiorim Teresa Cristina Francischetto Travaglia Dalton Valentim Vassallo Ivanita Stefanon 《PloS one》2014,9(9)
Gender associated differences in vascular reactivity regulation might contribute to the low incidence of cardiovascular disease in women. Cardiovascular protection is suggested to depend on female sex hormones’ effects on endothelial function and vascular tone regulation. We tested the hypothesis that potassium (K+) channels and Na+K+-ATPase may be involved in the gender-based vascular reactivity differences. Aortic rings from female and male rats were used to examine the involvement of K+ channels and Na+K+-ATPase in vascular reactivity. Acetylcholine (ACh)-induced relaxation was analyzed in the presence of L-NAME (100 µM) and the following K+ channels blockers: tetraethylammonium (TEA, 2 mM), 4-aminopyridine (4-AP, 5 mM), iberiotoxin (IbTX, 30 nM), apamin (0.5 µM) and charybdotoxin (ChTX, 0.1 µM). The ACh-induced relaxation sensitivity was greater in the female group. After incubation with 4-AP the ACh-dependent relaxation was reduced in both groups. However, the dAUC was greater in males, suggesting that the voltage-dependent K+ channel (Kv) participates more in males. Inhibition of the three types of Ca2+-activated K+ channels induced a greater reduction in Rmax in females than in males. The functional activity of the Na+K+-ATPase was evaluated by KCl-induced relaxation after L-NAME and OUAincubation. OUA reduced K+-induced relaxation in female and male groups, however, it was greater in males, suggesting a greater Na+K+-ATPase functional activity. L-NAME reduced K+-induced relaxation only in the female group, suggesting that nitric oxide (NO) participates more in their functional Na+K+-ATPase activity. These results suggest that the K+ channels involved in the gender-based vascular relaxation differences are the large conductance Ca2+-activated K+ channels (BKCa) in females and Kv in males and in the K+-induced relaxation and the Na+K+-ATPase vascular functional activity is greater in males. 相似文献
20.
Elisa Redaelli Rita Restano Cassulini Deyanira Fuentes Silva Herlinda Clement Emanuele Schiavon Fernando Z. Zamudio George Odell Annarosa Arcangeli Jeffrey J. Clare Alejandro Alag��n Ricardo C. Rodr��guez de la Vega Lourival D. Possani Enzo Wanke 《The Journal of biological chemistry》2010,285(6):4130-4142