首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Molecular cell》2020,77(4):840-856.e5
  1. Download : Download high-res image (144KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Enhancer of zeste homolog 2 (EZH2), the histone methyltransferase of the Polycomb Repressive complex 2 catalyzing histone H3 lysine 27 tri-methylation (H3K27me3), is frequently up-regulated in human cancers. In this study, we identified the tumor suppressor Deleted in liver cancer 1 (DLC1) as a target of repression by EZH2-mediated H3K27me3. DLC1 is a GTPase-activating protein for Rho family proteins. Inactivation of DLC1 results in hyper-activated Rho/ROCK signaling and is implicated in actin cytoskeleton reorganization to promote cancer metastasis. By chromatin immunoprecipitation assay, we demonstrated that H3K27me3 was significantly enriched at the DLC1 promoter region of a DLC1-nonexpressing HCC cell line, MHCC97L. Depletion of EZH2 in MHCC97L by shRNA reduced H3K27me3 level at DLC1 promoter and induced DLC1 gene re-expression. Conversely, transient overexpression of GFP-EZH2 in DLC1-expressing Huh7 cells reduced DLC1 mRNA level with a concomitant enrichment of EZH2 on DLC1 promoter. An inverse relation between EZH2 and DLC1 expression was observed in the liver, lung, breast, prostate, and ovarian cancer tissues. Treating cancer cells with the EZH2 small molecular inhibitor, 3-Deazaneplanocin A (DZNep), restored DLC1 expression in different cancer cell lines, indicating that EZH2-mediated H3K27me3 epigenetic regulation of DLC1 was a common mechanism in human cancers. Importantly, we found that DZNep treatment inhibited HCC cell migration through disrupting actin cytoskeleton network, suggesting the therapeutic potential of DZNep in targeting cancer metastasis. Taken together, our study has shed mechanistic insight into EZH2-H3K27me3 epigenetic repression of DLC1 and advocated the significant pro-metastatic role of EZH2 via repressing tumor and metastasis suppressors.  相似文献   

13.
Histone H1     
Linker histones of which histone H1 is a representative are a diverse family of architectural proteins within the eukaryotic nucleus. These proteins have a variety of structures, but invariably contain a region enriched in lysine, serine, alanine and profine. All metazoan histone His also include a structured domain that binds to DNA through a helix-turn-helix motif. By binding to the linker DNA flanking the nucleosome core they contribute to the assembly of higher-order chromatin structures. Surprisingly, the use of “knockout” technology to eliminate histone H1 in isolated cells and Xenopus does not prevent the assembly of chromosomes or nuclei, however specific genes are activated or repressed indicative of targeted regulatory functions. A dual role for histone HI in chromatin structure and gene regulation might contribute to epigenetic phenomena in which heritable states of gene activity are maintained through mechanisms independent of gene sequence. This may have important implications for biotechnological and medical research.  相似文献   

14.
LSD1 is essential for the maintenance of pluripotency of embryonic stem (ES) or embryonic carcinoma/teratocarcinoma (EC) cells. We have previously developed novel LSD1 inhibitors that selectively inhibit ES/EC cells. However, the critical targets of LSD1 remain unclear. Here, we found that LSD1 interacts with histone deacetylase 1 (HDAC1) to regulate the proliferation of ES/EC cells through acetylation of histone H4 at lysine 16 (H4K16), which we show is a critical substrate of HDAC1. The LSD1 demethylase and HDAC1 deacetylase activities were both inactivated if one of them in the complex was chemically inhibited in ES/EC cells or in reconstituted protein complexes. Loss of HDAC1 phenocopied the selective growth-inhibitory effects and increased the levels of H3K4 methylation and H4K16 acetylation of LSD1 inactivation on ES/EC cells. Reduction of acetylated H4K16 by ablation of the acetyltransferase males absent on the first (MOF) is sufficient to rescue the growth inhibition induced by LSD1 inactivation. While LSD1 or HDAC1 inactivation caused the downregulation of Sox2 and Oct4 and induction of differentiation genes, such as FOXA2 or BMP2, depletion of MOF restored the levels of Sox2, Oct4, and FoxA2 in LSD1-deficient cells. Our studies reveal a novel mechanism by which LSD1 acts through the HDAC1- and MOF-mediated regulation of H4K16 acetylation to maintain the pluripotency of ES/EC cells.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号