首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently identified a novel ABC A subclass transporter, ABCA6, in human macrophages. Here, we report the molecular cloning of an additional ABC A subfamily transporter from macrophages denoted ABCA9. The identified coding sequence is 4.9 kb in size and codes for a 1624 amino acid protein product. In accordance with the proposed nomenclature, the novel transporter was designated ABCA9. The putative full-length ABC transporter polypeptide consists of two transmembrane domains and two nucleotide binding folds and thus conforms to the group of full-size ABC transporters. We identified alternative ABCA9 mRNA variants in human macrophages that predict the existence of three truncated forms of the novel transporter. Among the human ABC A subfamily transporters, ABCA9 exhibits the highest amino acid sequence homology with ABCA8 (72%) and ABCA6 (60%), respectively. The striking amino acid sequence similarity between these transporter molecules supports the notion that they represent an evolutionary more recently emerged subgroup within the family of ABC A transporters, which we refer to as "ABCA6-like transporters." ABCA9 mRNA is ubiquitously expressed with the highest mRNA levels in heart, brain, and fetal tissues. Analysis of the genomic structure revealed that the ABCA9 gene consists of 39 exons that are located within a genomic region of approximately 85 kb size on chromosome 17q24.2. In human macrophages, ABCA9 mRNA is induced during monocyte differentiation into macrophages and suppressed by cholesterol import indicating that ABCA9, like other known ABC A subfamily transporters, is a cholesterol-responsive gene. Based on this information, ABCA9 is likely involved in monocyte differentiation and macrophage lipid homeostasis.  相似文献   

2.
3.
We report the identification of the full-length cDNA for a novel ATP-binding cassette (ABC) transporter from human macrophages. The mRNA is of 6.8 kb size and contains an open reading frame encoding a polypeptide of 2146 amino acids with a calculated molecular weight of 220 kDa. The predicted protein product is composed of two transmembrane domains and two nucleotide binding folds indicating that it pertains to the group of full-size ABC transporters. The novel transporter shows highest protein sequence homology with the recently cloned human cholesterol and phospholipid exporter ABCA1 (54%) and the human retinal transporter ABCR (49%), both members of the ABC transporter subfamily A. In accordance with the currently proposed classification, the novel transporter was designated ABCA7. ABCA7 mRNA was detected predominantly in myelo-lymphatic tissues with highest expression in peripheral leukocytes, thymus, spleen, and bone marrow. Expression of ABCA7 is induced during in vitro differentiation of human monocytes into macrophages. In macrophages, both the ABCA7 mRNA and protein expression are upregulated in the presence of modified low density lipoprotein and downregulated by HDL(3). Our results suggest a role for ABCA7 in macrophage transmembrane lipid transport.  相似文献   

4.
5.
6.
7.
We presently report the cloning of cDNA sequences encoding the novel rat ATP-binding cassette (ABC) transporter Abca5 and the orthologous human transporter, recently designated as ABCA5. Furthermore, the existence of a novel non-translated exon of the ABCA5 gene, previously assigned to an ABCA gene cluster in the chromosomal region 17q24.2-3, is demonstrated. Abca5 and ABCA5 cDNAs are predicted to give rise to proteins of 1642 amino acids which exhibit the typical domain arrangement of ABC full transporters and share 90% identity within the amino acid sequences. A cDNA representing an ABCA5 mRNA splice variant was cloned which would result in a truncated protein equivalent to an ABC half transporter. Northern blot analyses revealed expression of ABCA5 or Abca5 mRNA in several tissues, but particularly high Abca5 mRNA expression was observed in rat testis. Up-regulation of Abca5 mRNA expression during culture of primary rat hepatocytes suggests that hepatocyte cultures should provide a basis for investigation of Abca5 gene regulation and elucidation of Abca5 function.  相似文献   

8.
9.
ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone–rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders.  相似文献   

10.
Sperm are terminally differentiated cells that undergo several membrane-altering events before fusion with eggs. One event, the sea urchin sperm acrosome reaction (AR), is blocked by the lectin wheat germ agglutinin (WGA). In an effort to identify proteins involved in the AR induction, the peptide sequence was obtained from a 220-kDa WGA-binding protein. Degenerate PCR and library screening resulted in the full-length deduced amino acid sequence of an ATP-binding cassette transporter, suABCA. The protein of 1,764 residues has two transmembrane regions, two nucleotide-binding domains, and is most closely related to the human ABC subfamily A member 3 transporter (ABCA3). Sequence analysis suggests a large extracellular loop between transmembrane spanning segments 7 and 8, with five N-linked glycosylation sites. An antibody made to the loop region binds to non-permeabilized cells, supporting that this region is extracellular. suABCA is found in sperm membrane vesicles, it can be solubilized with nonionic detergents, and it shifts from 220 to 200 kDa upon protein:N-glycanase F digestion. suABCA localizes to the entire surface of sperm in a punctate pattern, but is not detected in lipid rafts. Based on its relationship to subfamily A, suABCA is most likely involved in phospholipid or cholesterol transport. This is the first investigation of an ABC transporter in animal sperm.  相似文献   

11.
ATP-binding cassette (ABC) transporter A4 is a member of the ABC transporter subfamily A which has been reported to be exclusively expressed in the retina. In contrast, a previous report has suggested a possible relationship between ABCA4 and CNS function. The purpose of the present study was to investigate the localization of ABCA4 mRNA and protein in rat brain. In situ hybridization analysis revealed that ABCA4 mRNA was localized in the lateral ventricles. RT-PCR analysis detected ABCA4 mRNA in isolated rat choroid plexus and conditionally immortalized rat choroid plexus epithelial cells (TR-CSFB). Furthermore, ABCA4 protein was also detected in the isolated rat choroid plexus at about 250 kDa by western blot analysis, and its apparent molecular size was reduced by N-glycosidase F treatment. These results suggest that glycosylated ABCA4 protein is expressed in rat choroid plexus epithelial cells. ABCA4 may play a role in the function of the blood-cerebrospinal fluid barrier and affect CSF conditions.  相似文献   

12.
13.
Li G  Shi P  Wang Y 《Genomics》2007,89(3):385-391
ABCA is a subfamily of ATP-binding-cassette (ABC) transporter genes. In this subfamily, it was found that five ABCA genes cluster in a head-to-tail pattern in the human and mouse genomes, but only one was found in fish. To understand better the evolution of this cluster of genes, we screened 11 vertebrate genome sequences and newly identified 28 ABCA cluster genes. Comparative genomic analysis reveals that the ABCA5 gene is relatively evolutionarily conserved. In contrast, the repertoires of the other ABCA genes in this cluster diverge tremendously among species, which is due mainly to postspeciation duplications. In addition, maximum likelihood analysis reveals that positive selection is acting on the paralogous genes ABCA6 and Abca8a, suggesting that these two genes have possibly acquired new functions after duplication. Because most eukaryotic ABC proteins integrate into the cytoplasmic membrane and transport a wide range of substrates across it, we conjecture that newly duplicated ABCA cluster genes are under diversifying selection for the ability to recognize a diverse array of substrates.  相似文献   

14.
The ATP-binding cassette transporter G1 (ABCG1) was recently identified as a regulator of macrophage cholesterol and phospholipid transport. This transporter together with ABCA1 belongs to a group of sterol-sensitive ABC proteins which are induced by lipid loading or specific oxysterols. We report here the genomic structure of ABCG1 along with the 5' flanking sequence using library screening and BLAST search analysis. The ABCG1 gene spans more than 70 kb and contains 15 exons. The exon size is between 30 and 1081 bp and the introns range in size from 137 bp to more than 45 kb. All exon-intron boundaries display the canonical GT/AG sequences. Using promoter-luciferase reporter assays in the myeloid cell lines THP-1 and RAW246.7 and the hepatoma cell line HepG2 we could demonstrate the functionality of the ABCG1 promoter and the minimal sequence requirements for gene expression. The TATA-less proximal promoter contains multiple Sp1 binding sites and a consensus sequence for sterol regulatory element binding protein.  相似文献   

15.
Summary: Members of the ATP-binding cassette (ABC) transporter superfamily exist in bacteria, fungi, plants, and animals and play key roles in the efflux of xenobiotic compounds, physiological substrates, and toxic intracellular metabolites. Based on sequence relatedness, mammalian ABC proteins have been divided into seven subfamilies, ABC subfamily A (ABCA) to ABCG. This review focuses on recent advances in our understanding of ABC transporters in the model organism Saccharomyces cerevisiae. We propose a revised unified nomenclature for the six yeast ABC subfamilies to reflect the current mammalian designations ABCA to ABCG. In addition, we specifically review the well-studied yeast ABCC subfamily (formerly designated the MRP/CFTR subfamily), which includes six members (Ycf1p, Bpt1p, Ybt1p/Bat1p, Nft1p, Vmr1p, and Yor1p). We focus on Ycf1p, the best-characterized yeast ABCC transporter. Ycf1p is located in the vacuolar membrane in yeast and functions in a manner analogous to that of the human multidrug resistance-related protein (MRP1, also called ABCC1), mediating the transport of glutathione-conjugated toxic compounds. We review what is known about Ycf1p substrates, trafficking, processing, posttranslational modifications, regulation, and interactors. Finally, we discuss a powerful new yeast two-hybrid technology called integrated membrane yeast two-hybrid (iMYTH) technology, which was designed to identify interactors of membrane proteins. iMYTH technology has successfully identified novel interactors of Ycf1p and promises to be an invaluable tool in future efforts to comprehensively define the yeast ABC interactome.  相似文献   

16.
In the present study, we have cloned the cDNA of ABCC13, a novel ABC transporter, from the cDNA library of adult human placenta. The ABCC13 gene spans approximately 70kb on human chromosome 21q11.2 and consists of 14 exons. The open reading frame of the ABCC13 cDNA encodes a peptide consisting of 325 amino acid residues. The amino acid sequence corresponding to putative membrane-spanning domains was remarkably similar to ABCC1, ABCC2, ABCC3, and ABCC6. The ABCC13 gene was expressed in the fetal liver at the highest level among the organs studied. While ABCC13 was expressed in the bone marrow, its expression in peripheral blood leukocytes of adult humans was much lower and no detectable levels were observed in differentiated hematopoietic cells. The expression of ABCC13 in K562 cells decreased during cell differentiation induced by TPA. These results suggest that the expression of human ABCC13 is related with hematopoiesis.  相似文献   

17.
李光  王义权 《遗传》2006,28(8):1015-1022
ABC(ATP-binding cassette)基因家族编码膜蛋白,其成员负责多种物质的跨膜运输。基于氨基酸序列的同源性,人的48个ABC成员被分为7个亚家族:ABCA~ABCG。与其他亚家族相比,ABCA基因编码的蛋白具有独特的拓扑结构,并且其家族成员在两栖动物和哺乳动物分化之后各发生过一次大的扩展(expanding)。基因结构分析发现这两次扩展均是通过基因倍增实现的,这些倍增的产物在啮齿目和食肉目中得到保留,而在灵长目中却有一半变成假基因或被删除。ABCA成员主要负责不同组织器官脂类和胆固醇的跨膜运输,部分成员的突变与疾病相关。  相似文献   

18.
An alignment of the mammalian ABCA transporters enabled the identification of sequence segments, specific to the ABCA subfamily, which were used as queries to search for eukaryotic and prokaryotic homologues. Thirty-seven eukaryotic half and full-length transporters were found, and a close relationship with prokaryotic subfamily 7 transporters was detected. Each half of the ABCA full-transporters is predicted to comprise a membrane-spanning domain (MSD) composed of six helices and a large extracellular loop, followed by a nucleotide-binding domain (NBD) and a conserved cytoplasmic 80-residue sequence, which might have a regulatory function. The topology predicted for the ABCA transporters was compared to the crystal structures of the MsbA and BtuCD bacterial transporters. The alignment of the MSD and NBD domains provided an estimate of the degree of residue conservation in the cytoplasmic, extracellular and transmembrane domains of the ABCA transporter subfamily. The phylogenic tree of eukaryotic ABCA transporters based upon the NBD sequences, consists of three major clades, corresponding to the half-transporter single NBDs and to the full-transporter NBDls and NBD2s. A phylogenic tree of prokaryotic transporters and the eukaryotic ABCA transporters confirmed the evolutionary relationship between prokaryotic subfamily 7 transporters and eukaryotic ABCA half and full-transporters.  相似文献   

19.
20.
Chen  Zhang-qun  Annilo  Tarmo  Shulenin  Sergey  Dean  Michael 《Mammalian genome》2004,15(5):335-343
We have identified and cloned three mouse genes that belong to the ABCA subfamily of ATP-binding cassette (ABC) transporters. These three genes are arranged in a tandem head-to-tail cluster spanning about 300 kb on mouse Chromosome (Chr) 7F3. Phylogenetic analysis indicates that although the three genes are related to human and mouse ABCA3, they are not orthologs of any of the current list of 48 human ABC genes and were, therefore, named Abca14, Abca15, and Abca16. The coding region of each gene is split into 31 exons, has an open reading frame of more than 1600 amino acids, and encodes a full transporter molecule with two nucleotide-binding folds (NBF) and two transmembrane domains (TMD). All three genes are predominantly expressed in testis, which suggests that they may perform special functions in testicular development or spermatogenesis. Interestingly, the human genome contains only fragments (less than ten exons) of at least two different ABC genes in the syntenic region on Chromosome 16p12 that are scattered among other, unrelated genes and are not capable of coding functional ABC transporters.(Zhang-qun Chen and Tarmo Annilo) These authors contributed equally to this study.Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession numbers AY243470–AY243472.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号