首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary A serine protease, ingobsin, that cleaves Lys-x and Arg-x, has been purified from rat duodenal tissue. By immunohistochemical methods, the enzyme was localized in goblet cells in the small intestine of rat, pig, and man. The immunoreactive cells were most numerous in the proximal part of the intestine. In the electron microscope, the immunoreaction was localized mainly to the rough endoplasmic reticulum of the goblet cells and to the secretion being extruded from the cells.  相似文献   

2.
The inhibition of PGE(2) synthesis resulting from sustained NSAIDs therapy has been linked to gastrointestinal irritations and ulceration. The multiple physiological effects of PGE(2) in the gut are mediated through the activation of four receptors termed EP(1-4). The aim of the study was to determine the precise distribution of the four prostaglandin E(2) receptors in the rat stomach, small intestine, and colon. We used non-radioactive in situ hybridization techniques on paraffin-embedded tissue. Mucous cells of the stomach and goblet cells of the small intestine and colon were found to express mRNA for all four EP subtypes. A positive hybridization signal for EP(1), EP(3), and EP(4) was detected in the parietal cells of the stomach whereas the chief cells expressed low levels of EP(1) and EP(3). The EP(1) and EP(3) receptor mRNA could also be detected in the muscularis mucosa, longitudinal muscle and enteric ganglias of the stomach and small intestine. However, close examination of the enteric ganglias indicated that most of the positive labeling was localized to the glial cells, although some neurons did express EP(3). In conclusion, we have detailed the distribution of prostanoid EP receptors in the gut at the cellular level, giving new insights to the role of prostaglandins in gastrointestinal functions.  相似文献   

3.
Oral and subcutaneous administration of 16,16-dimethylprostaglandin E2 (16,16-dimethyl PGE2) resulted in an increase in the dry weight of the stomach and small intestine of the female rat. This weight response was rapid, controlled rather than continuously progressing, dose dependent and reversible. The dry weight of the colon also increased but this was not studied in detail. Two-day treatment with 16,16-dimethyl PGE2 caused an increase in the incorporation of 3H-thymidine into the duodenum, jejunum and colon suggesting an increase in cell number. Incorporation into the stomach and ileum was not changed. The number of goblet cells per crypt was increased by prostaglandin treatment in all parts of the small intestine. Since these are mucus producing cells, the small intestine may have increased in cell number and mucus production. Both anti-secretory and cytoprotective doses of 16,16-dimethyl PGE2 caused weight increases in the stomach and small intestine. However, the weight gain by itself was not sufficient to protect the stomach or small intestine from necrotic agents after the prostaglandin was discontinued.  相似文献   

4.
Oral and subcutaneous administration of 16,16-dimethylprostaglandin E2 (16,16-dimethyl PGE2) resulted in an increase in the dry weight of the stomach and small intestine of the female rat. This weight response was rapid, controlled rather than continuously progressing, dose dependent and reversible. The dry weight of the colon also increased but this was not studied in detail.Two-day treatment with 16,16-dimethyl PGE2 caused an increase in the incorporation of 3H-thymidine into the duodenum, jejunum and colon suggesting an increase in cell number. Incorporation into the stomach and ileum was not changed.The number of goblet cells per crypt was increased by prostaglandin treatment in all parts of the small intestine. Since these are mucus producing cells, the small intestine may have increased in cell number and mucus production.Both anti-secretory and cytoprotective doses of 16,16-dimethyl PGE2 caused weight increases in the stomach and small intestine. However, the weight gain by itself was not sufficient to protect the stomach or small intestine from necrotic agents after the prostaglandin was discontinued.  相似文献   

5.
Muc4/sialomucin complex (SMC) is a high molecular mass heterodimeric membrane mucin, encoded by a single gene, and originally discovered in a highly metastatic ascites rat mammary adenocarcinoma. Subsequent studies have shown that it is a prominent component of many accessible and vulnerable epithelia, including the gastrointestinal tract. Immunoblot and immunofluorescence analyses demonstrated that Muc4/SMC expression in the rat small intestine increases from proximal to distal regions and is located predominantly in cells at the base of the crypts. These cells were postulated to be Paneth cells, based on their location, morphology, and secretory granule content. Immunohistochemistry indicated the presence of Muc4/SMC in these granules. Muc4/SMC expression was higher in the rat colon than small intestine and was abundantly present in colonic goblet cells, but not in goblet cells in the small intestine. Immunohistochemistry also suggested the presence of MUC4 in human colonic goblet cells. Biochemical analyses indicated that rat colonic Muc4/SMC is primarily the soluble form of the membrane mucin. Analyses of Muc4/SMC during development of the rat gastrointestinal tract showed its appearance at embryonic day 14 of the esophagus and at day 15 at the surface of the undifferentiated stratified epithelium at the gastroduodenal junction, then later at cell surfaces in the more distal regions of the differentiated epithelium of the small intestine, culminating in expression as an intracellular form in the crypts of the small intestine at about day 21. Limited expression in the colon was observed during development before birth at cell surfaces, with expression as an intracellular form in the goblet cells arising during the second week after birth. These results suggest that membrane mucin Muc4/SMC serves different functions during development of the intestine in the rat, but is primarily a secreted product in the adult animal.  相似文献   

6.
7.
The cellular localization of glutathione-requiring PGD synthetase, which catalyzes the predominant formation of PGD2 in various peripheral tissues, was investigated in adult rats by immunoperoxidase-staining with a polyclonal antibody specific for this enzyme. Although the 25 N-terminal amino acid residues of synthetase are 56% identical and 76% similar to those of several rat glutathione S-transferase subunits, the antibody cross-reacted only with synthetase in dot blotting and was nearly completely inactive with all transferase isozymes thus far purified. In Western blotting after SDS-PAGE of crude extracts of rat spleen, the antibody showed a single positive band at the same position as that of the purified enzyme (Mr = 26,000). The positive immunocytochemical stain was found in a number of histiocytes and/or dendritic cells in spleen, thymus, and Peyer's patch of intestine. The immunostain was also observed in such cells in lamina propria of the villus in small intestine and colon, in submucosal layer of stomach, and in Kupffer cells in liver. Immunoelectron microscopy confirmed that immunoreactivity of this enzyme was distributed in cytoplasm of those cells. Such immunoreactive cells were not observed in brain, spinal cord, kidney, heart, testis, and skeletal muscle. These observations suggest that PGD2 is produced by glutathione-requiring PGD synthetase localized in these types of APC in various tissues and may play a critical role in dictating the progression of immune responses.  相似文献   

8.
The mucus layer covering the gut epithelium is pivotal to host defence and is affected by various dietary components. Part of the reported beneficial effect of dietary immunoglobulins (Igs) on gut health may be due to effects on the gut mucus layer. The aim was to determine whether orally administered ovine serum Ig influence goblet cell count, mucin gene expression and digesta mucin protein content in the gut of the growing rat. Fourteen Sprague-Dawley male growing rats were used in a 21-day study and were fed either a casein-based control diet (CON; no Ig) or a similar diet but containing freeze-dried ovine Ig (FDOI). Daily food intake and growth rate were not affected by the dietary treatments. When compared to the rats consuming CON diet, those consuming the FDOI diet had significantly (P < 0.05) more intact and cavitated goblet cells in the intestinal villi. A similar result was found for crypt goblet cells in the small intestine and colon. Ileal Muc2, Muc3, Muc4 and stomach Muc5Ac mRNA expressions for the FDOI animals were higher (P < 0.05) compared to the the CON animals. Mucin protein content was higher (P < 0.05) in the stomach, ileum and colonic digesta of rats fed the FDOI diet. In conclusion, orally administered FDOI influenced gut mucins in the growing rat as evidenced by increased mucin gene expression and digesta mucin protein concentrations as well as an increased goblet cell count.  相似文献   

9.
Kinetics of intestinal mast cells and goblet cells were examined in relation to worm localization at various sites in the small intestine of rats infected with 3000 filariform (stage 3) larvae of Strongyloides ratti. The most marked intestinal mastocytosis was observed on Day 20 at the anterior site of the small intestine where the majority of the worms had concentrated. The number of mast cells in the posterior small intestine increased in parallel with the posterior shift of parasites at the later stage of the infection. In contrast to the intestinal mast cell response, the number of goblet cells was not significantly affected by the infection. These results strongly suggest that intestinal mastocytosis is closely related to the presence of the worms and that mast cells may play an important role for the expulsion of S. ratti.  相似文献   

10.
Antibodies to histamine were used to examine the localization of the amine in cells of the stomach and upper small intestine of a great variety of species, including cartilaginous and bony fish, amphibia, reptiles (lizard), birds (chicken) and a large number of mammals. In all species gastric histamine was localized in endocrine cells (invariably found in the epithelium) and mast cells (usually with an extra-epithelial localization). The endocrine cells were identified as such by immunostaining with antibodies to chromogranin A and the mast cells were identified by toluidine blue staining. Histamine-immunoreactive endocrine cells were found almost exclusively in the acid-producing part of the stomach; only rarely were such cells observed in the pyloric gland area. They were fairly numerous in the gastric mucosa of the two subclasses of fish as well as in the amphibia and reptile species studied. Here, the majority of the histamine-immunoreactive endocrine cells seemed to have contact with the gastric lumen (open type cells) and were located in the surface epithelium (certain fish only) or together with mucous neck cells at the bottom of the pits. In the chicken, histamine-immunoreactive endocrine cells were numerous and located peripherally in the deep compound glands. They were without contact with the lumen (closed type) and had long basal extensions ("paracrine" appearance), running close to the base of the oxyntic-peptic cells. In mammals, the number of histamine-immunoreactive endocrine cells in the stomach varied greatly. They were particularly numerous in the rat and notably few in the dog, monkey and man. In all mammals, the histamine-immunoreactive endocrine cells were of the closed type and located basally in the oxyntic glands. They often had a "paracrine" appearance with long basal processes. Histamine-storing mast cells, finally, were few in both subclasses of fish as well as in the amphibian species and in the lizard. They were fairly numerous in chicken proventriculus (beneath the surface epithelium), few in the oxyntic mucosa of mouse, rat and hamster, moderate in number in hedgehog, guinea-pig, rabbit, pig and monkey, and numerous in cat, dog and man.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Mast cells contain spleen-type prostaglandin D synthetase   总被引:2,自引:0,他引:2  
Prostaglandin D synthetase activity in the cytosol (100,000 x g, 1-h supernatant) fraction of peritoneal mast cells of adult rats (105.0 nmol/min/mg protein) was the highest among such activities in various rat tissues and cells. As judged by the absolute requirement for glutathione for the reaction (Km = 300 microM), the Km value for prostaglandin H2 (200 microM), and insensitivity of the activity to 1 mM 1-chloro-2,4-dinitrobenzene, the enzyme in mast cells was similar to rat spleen prostaglandin D synthetase and differed from rat brain prostaglandin D synthetase or glutathione S-transferase, all of which catalyze the isomerase reaction from prostaglandin H2 to prostaglandin D2. In immunotitration analyses, the activity in mast cells showed a titration curve exactly identical with that of the purified spleen-type enzyme and almost completely absorbed by an excess amount of antibody against this enzyme, but it remained unchanged after incubation with antibodies against the brain-type enzyme and glutathione S-transferase isozymes thus far purified. In Western blot after two-dimensional electrophoresis of crude extracts of mast cells, a single immunoreactive spot was observed with antibody against the spleen-type enzyme at the same position as that of the purified enzyme (Mr = 26,000, pI = 5.2). Furthermore, the immunoreactive protein obtained from mast cells showed the same peptide fingerprints as those of the purified spleen-type enzyme, after partial digestion with Staphylococcus aureus V8 protease or trypsin. In immunoperoxidase staining, the immunoreactivity of the spleen-type enzyme was found in the cytosol of tissue mast cells in various organs such as thymus, intestine, stomach, and skin of adult rats. These findings indicate that prostaglandin D2 is produced by the spleen-type synthetase in mast cells of various tissues.  相似文献   

12.
Summary Glucose is actively absorbed in the intestine by the action of the Na+-dependent glucose transporter. Using an antibody against the rabbit intestinal Na+-dependent glucose transporter (SGLT1), we examined the localization of SGLT1 immunohistochemically along the rat digestive tract (oesophagus, stomach, duodenum, jejunum, ileum, colon and rectum). SGLT1 was detected in the small intestine (duodenum, jejunum and ileum), but not in the oesophagus, stomach, colon or rectum. SGLT1 was localized at the brush border of the absorptive epithelium cells in the small intestine. Electron microscopical examination showed that SGLT1 was localized at the apical plasma membrane of the absorptive epithelial cells. SGLT1 was not detected at the basolateral plasma membrane. Along the crypt-villus axis, all the absorptive epithelial cells in the villus were positive for SGLT1, whose amount increased from the bottom of the villus to its tip. On the other hand, cells in the crypts exhibited little or no staining for SGLT1. Goblet cells scattered throughout the intestinal epithelium were negative for SGLT1. These observations show that SGLT1 is specific to the apical plasma membrane of differentiated absorptive epithelial cells in the small intestine, and suggest that active uptake of glucose occurs mainly in the absorptive epithelial cells in the small intestine.  相似文献   

13.
The histochemical localization of G6Pase and 5-Nase in the digestive system of Ophiocephalus (Channa) punctatus was studied. The highest activities of these enzymes were found in the liver. Appreciable activity was also found in the anterior intestine (duodenum) and pyloric caeca. The activity faded toward the middle and posterior intestine and rectum. In the stomach the activity was moderate. The activity of 5-Nase was weaker than that of G6Pase. In the stomach the enzymes were localized in the mucosa and gastric glands. The absorptive columnar epithelial cells were the major sites of localization in the intestine. The goblet cells were negative. The G6Pase activity was associated with the cytoplasm, while the 5-Nase activity was found in the cell membranes and the nuclei.  相似文献   

14.
15.
The intestinal response of the protein-deficient Wistar rat was examined after primary infection with 1500 larvae of Nippostrongylus brasiliensis. Protein-deficient animals failed to expel N. brasiliensis after 15 days at a time when nutritionally normal animals had expelled more than 99% of the worm burden. Morphology of the small intestine of protein-deficient animals before infection showed small villi and crypt hypoplasia, followed after infection by sustained crypt hyperplasia and increased mitotic index of crypts. Protein deficiency was associated with fewer mucosal mast cells, goblet cells and intraepithelial lymphocytes. There was an impaired response of mucosal mast cells and goblet cells to infection. This could explain the deficiency of worm expulsion in these protein-deficient animals.  相似文献   

16.
Aquaporin-2 (AQP-2) is the vasopressin-regulated water channel expressed in the apical membrane of principal cells in the collecting duct and is involved in the urinary concentrating mechanism. In the rat distal colon, vasopressin stimulates water absorption through an unknown mechanism. With the hypothesis that AQP-2 could contribute to this vasopressin effect, we studied its presence in rat colonic epithelium. We used RT-PCR, in situ hybridization, immunoblotting, and immunocytochemistry to probe for AQP-2 expression. An AQP-2 amplicon was obtained through RT-PCR of colon epithelium RNA, and in situ hybridization revealed AQP-2 mRNA in colonic crypts and, to a lesser extent, in surface absorptive epithelial cells. AQP-2 protein was localized to the apical membrane of surface absorptive epithelial cells, where it colocalized with H(+)-K(+)-ATPase but not with Na(+)-K(+)-ATPase. AQP-2 was absent from the small intestine, stomach, and liver. Water deprivation increased the hybridization signal and the protein level (assessed by Western blot analysis) for AQP-2 in distal colon. This was accompanied by increased p-chloromercuriphenylsulfonic acid-sensitive water absorption. These results indicate that AQP-2 is present in the rat distal colon, where it might be involved in a water-sparing mechanism. In addition, these results support the idea that AQP-2, and probably other aquaporins, are involved in water absorption in the colon.  相似文献   

17.
采用常规石蜡组织切片的方法对野生和养殖黄鳍鲷(Sparus latus)消化道的形态组织结构进行了比较观察。结果表明,野生和养殖黄鳍鲷的消化道存在一定差异。(1)形态学研究表明,食道粗而短,胃呈V形,分为贲门部、胃体部和幽门部,胃与肠的连接处有4条幽门盲囊,肠道在体腔内迂回两个回折。野生黄鳍鲷牙齿更为坚硬锋利,体腔中脂肪较少,消化道更为粗短。野生和养殖黄鳍鲷的肠道系数分别为0.71±0.03和0.94±0.12。(2)组织学研究表明,食道黏膜上皮由扁平细胞层和杯状细胞层组成,杯状细胞发达。胃黏膜由单层柱状上皮组成,无杯状细胞,贲门部和胃体部胃腺发达。幽门盲囊组织学特征与肠相似,上皮为柱状上皮,其中的杯状细胞少于肠。肠中,前肠杯状细胞最多,中肠次之,后肠最少。直肠杯状细胞多于肠。野生与养殖黄鳍鲷组织学的区别在于,消化道相同部位养殖鱼的杯状细胞多于野生鱼,野生鱼的肌层厚度大于养殖鱼。黄鳍鲷消化道的形态组织结构与其生活环境和食物是相关的。  相似文献   

18.
We investigated the histochemical characteristics of mast cell tryptase in different mouse tissues. By use of peptide substrates, tryptase activity could be demonstrated in unfixed connective tissue mast cells in different tissues, including the stomach. Tryptase activity was better localized after aldehyde fixation and frozen sectioning, and under such conditions was also demonstrated in mucosal mast cells of the stomach but not in those of the gut mucosa. Double staining by enzyme histochemistry followed by toluidine blue indicated that the tryptase activity was present only in mast cells and that all mast cells in the stomach mucosa contained the enzyme. The peptide substrates z-Ala-Ala-Lys-4-methoxy-2-naphthylamide and z-Gly-Pro-Arg-4-methoxy-2-naphthlyamide, which are substrates of choice for demonstrating tryptase in other species, were most effective for demonstrating mouse tryptase. The use of protease inhibitors further indicated that activity present in all mast cells was tryptase. Safranin O did not stain stomach mucosal mast cells, suggesting that the tryptase present in these cells was active in the absence of heparin sulfate proteoglycan.  相似文献   

19.
We have cloned the cDNA and genomic DNA of an active intronless cathepsin L from Metapenaeus ensis. The encoded enzyme has the shortest prosequence among cathepsin L subgroup. It was predominantly expressed in hepatopancreas with an expression level of at least 10 times higher than in any other tissues. It also has expression in stomach, intestine, eye, testis, ovary and muscle. Western blots visualized the mature enzyme in hepatopancreas and a procathepsin L in ovary, intestine and stomach. Metapenaeus cathepsin L (MeCatL) is localized in the large digestive vacuole of the digestive B cell of hepatopancreas. MeCatL has a role in food digestion. An interesting finding is that it exists in the nucleus of oocyte. MeCatL might have a specified physiological role in the nucleus of oocyte. MeCatL might also have a house-keeping function as is suggested for mammalian cathepsin L.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号