首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Static exercise is well known to increase heart rate, arterial blood pressure, and ventilation. These increases appear to be less in women than in men, a difference that has been attributed to an effect of estrogen on neuronal function. In decerebrate male cats, we examined the effect of estrogen (17beta-estradiol; 0.001, 0.01, 0.1, and 1.0 microg/kg iv) on the cardiovascular and ventilatory responses to central command and the exercise pressor reflex, the two neural mechanisms responsible for evoking the autonomic and ventilatory responses to exercise. We found that 17beta-estradiol, in each of the three doses tested, attenuated the pressor, cardioaccelerator, and phrenic nerve responses to electrical stimulation of the mesencephalic locomotor region (i.e., central command). In contrast, none of the doses of 17beta-estradiol had any effect on the pressor, cardioaccelerator, and ventilatory responses to static contraction or stretch of the triceps surae muscles. We conclude that, in decerebrate male cats, estrogen injected intravenously attenuates cardiovascular and ventilatory responses to central command but has no effect on responses to the exercise pressor reflex.  相似文献   

2.
In congestive heart failure (CHF), exaggerated sympathetic activation is observed during exercise, which elicits excess peripheral vasoconstriction. The mechanisms causing this abnormality are not fully understood. Central command is a central neural process that induces parallel activation of motor and cardiovascular systems. This study was undertaken to determine whether central command serves as a mechanism that contributes to the exaggerated sympathetic response to exercise in CHF. In decerebrated rats, renal and lumbar sympathetic nerve responses (RSNA and LSNA, respectively) to 30 s of fictive locomotion were examined. The fictive locomotion was induced by electrical stimulation of the mesencephalic locomotor region (MLR). The study was performed in control animals (fractional shortening > 40%) and animals with myocardial infarctions (MI; fractional shortening < 30%). With low stimulation of the MLR (current intensity = 20 microA), the sympathetic responses were not significantly different in the control (RSNA: +18 +/- 4%; LSNA: +3 +/- 2%) and MI rats (RSNA: +16 +/- 5%; LSNA: +8 +/- 3%). With intense stimulation of the MLR (50 microA), the responses were significantly greater in MI rats (RSNA: +127 +/- 15%; LSNA: +57 +/- 10%) than in the control rats (RSNA: +62 +/- 5%; LSNA: +21 +/- 6%). In this study, the data demonstrate that RSNA and LSNA responses to intense stimulation of the MLR are exaggerated in MI rats. We suggest that intense activation of central command may play a role in evoking exaggerated sympathetic activation and inducing excessive peripheral vasoconstriction during exercise in CHF.  相似文献   

3.
In decerebrate unanesthetized cats, we determined whether either "central command," the exercise pressor reflex, or the muscle mechanoreceptor reflex reset the carotid baroreflex. Both carotid sinuses were vascularly isolated, and the carotid baroreceptors were stimulated with pulsatile pressure. Carotid baroreflex function curves were determined for aortic pressure, heart rate, and renal vascular conductance. Central command was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) in cats that were paralyzed. The exercise pressor reflex was evoked by statically contracting the triceps surae muscles in cats that were not paralyzed. Likewise, the muscle mechanoreceptor reflex was evoked by stretching the calcaneal tendon in cats that were not paralyzed. We found that each of the three maneuvers shifted upward the linear relationship between carotid sinus pressure and aortic pressure and heart rate. Each of the maneuvers, however, had no effect on the slope of these baroreflex function curves. Our findings show that central command arising from the MLR as well as the exercise pressor reflex are capable of resetting the carotid baroreflex.  相似文献   

4.
In decerebrate paralyzed cats, we examined the responses of 18 spinoreticular neurons to electrical stimulation of the mesencephalic locomotor region. The activity of each of the spinoreticular neurons was recorded extracellularly from laminae IV through VI of the L(7) and S(1) spinal cord. In addition, each of the 18 spinoreticular neurons received group III afferent input from the tibial nerve. Spinoreticular projections were established for each of 18 neurons by antidromic invasion of the ventro lateral medulla at the P11 though P14 levels. The onset latencies and current thresholds for antidromic invasion from the ventro lateral medulla averaged 15.0 +/- 3.8 ms and 117 +/- 11 microA, respectively. Electrical stimulation of the mesencephalic locomotor region attenuated the spontaneous activity or the responses of each of the spinoreticular neurons to tibial nerve stimulation at currents that recruited group III afferents. Our data support the notion that thin-fiber muscle afferent input to the ventrolateral medulla is gated by a central command to exercise.  相似文献   

5.
Using decerebrate frogs (Rana catesbeiana), we investigated the role of vagal and laryngeal sensory feedback in controlling motor activation of the larynx. Vagal and laryngeal nerve afferents were activated by electrical stimulation of the intact vagal and laryngeal nerves. Pulmonary afferents were activated by lung inflation. Reflex responses were recorded by measuring efferent activity in the laryngeal branch of the vagus (Xℓ) and changes in glottal aperture. Two glottic closure reflexes were identified, one evoked by lung inflation or electrical stimulation of the main branch of the vagus (Xm), and the other by electrical stimulation of Xℓ. Lung inflation evoked a decrementing burst of Xℓ efferent activity and electrical stimulation of Xm resulted in a brief burst of Xℓ action potentials. Electrical stimulation of Xℓ evoked a triphasic mechanical response, an abrupt glottal constriction followed by glottal dilatation followed by a long-lasting glottal constriction. The first phase was inferred to be a direct (nonreflex) response to the stimulus, whereas the second and third represent reflex responses to the activation of laryngeal afferents. Intracellular recordings of membrane potential of vagal motoneurons of lung and nonlung types revealed EPSPs in both types of neurons evoked by stimulation of Xm or Xℓ, indicating activation of glottal dilator and constrictor motoneurons. In summary, we have identified two novel reflexes producing glottic closure, one stimulated by activation of pulmonary receptors and the other by laryngeal receptors. The former may be part of an inspiratory terminating reflex and the latter may represent an airway protective reflex. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 213–222, 1997  相似文献   

6.
To assess the role of structures located superficially near the ventrolateral surface of the medulla on the reflex constriction of tracheal smooth muscle that occurs when airway and pulmonary receptors are stimulated mechanically or chemically, experiments were conducted in alpha-chloralose-anesthetized, paralyzed, and artificially ventilated cats. Pressure changes within a bypassed segment of the trachea were used as an index of alterations smooth muscle tone. The effects of focal cooling of the intermediate areas or topically applied lidocaine on the ventral surface of the medulla on the response of the trachea to mechanical and chemical stimulation of airway receptors were examined. Atropine abolished tracheal constriction induced by mechanical stimulation of the carina or aerosolized histamine, showing that the responses were mediated over vagal pathways. Moderate cooling of the intermediate area (20 degrees C) or local application of lidocaine significantly decreased the tracheal constrictive response to mechanical activation of airway receptors. Furthermore, when the trachea was constricted by histamine, cooling of the intermediate area significantly diminished the increased tracheal tone, whereas rewarming restored tracheal tone to the previous level. These findings suggest that under the conditions of the experiments the ventral surface of the medulla plays an important role in constriction of the trachea by inputs from intrapulmonary receptors and in the modulation of parasympathetic outflow to airway smooth muscle.  相似文献   

7.
The purpose of this study was to develop a dynamic exercise model in the rat that could be used to study central nervous system control of the cardiovascular system. Rats of both sexes were decerebrated under halothane anesthesia and prepared for induced locomotion on a freely turning wheel. Electrical stimulation of the mesencephalic locomotor region (MLR) elicited locomotion at different speeds and gait patterns and increased heart rate and blood pressure. Two maneuvers were performed to illustrate the potential use of the preparation. The first maneuver consisted of muscular paralysis, which prevents excitation of muscle mechanoreceptors and chemoreceptors resulting from exercise. MLR stimulation still increased blood pressure. The second maneuver was performed to determine whether the blood pressure response obtained during paralysis was an artifact of electrical stimulation of the MLR. After microinjection of gamma-aminobutyric acid into the MLR, electrical current thresholds for blood pressure and locomotion increased in parallel. gamma-Aminobutyric acid injection also reduced the pressor response to suprathreshold electrical stimulation by 76%. The injection results suggest that electrical stimulation of the MLR activates cells rather than fibers of passage. The blood pressure response of the exercise model is probably not an artifact of stimulation. The decerebrate rat locomotor preparation should offer another approach to investigate difficult problems in exercise physiology.  相似文献   

8.
We studied the role of central command mediation of exercise hyperpnea by comparing the ventilatory and arterial CO2 partial pressure (PaCO2) responses to voluntary (ExV) and electrically induced (ExE) muscle contractions in normal, awake human subjects. We hypothesized that if central command signals are critical to a normal ventilatory response, then ExE should cause a slower ventilatory response resulting in hypercapnia at the onset of exercise. ExE was induced through surface electrodes placed over the quadriceps and hamstring muscles. ExE and ExV produced leg extension (40/min) against a spring load that increased CO2 production (VCO2) 100-1,000 ml/min above resting level. PaCO2 and arterial pH during work transitions and in the steady state did not differ significantly from rest (P greater than 0.05) or between ExE and ExV. The temporal pattern of ventilation, tidal volume, breathing frequency, and inspired and expired times, and the ventilation-VCO2 relationship were similar between ExE and ExV. We conclude that since central command was reduced and/or eliminated by ExE, central command is not requisite for the precise matching of alveolar ventilation to increases in VCO2 during low-intensity muscle contractions.  相似文献   

9.
Animals decerebrated at the precollicular-premammillary body level exhibit spontaneous locomotion without any artificial stimulation. Our laboratory reported that the cardiovascular and autonomic responses at the onset of spontaneous locomotor events are evoked by central command, generated from the caudal diencephalon and the brain stem (Matsukawa K, Murata J, and Wada T. Am J Physiol Heart Circ Physiol 275: H1115-H1121, 1998). In this study, we examined whether central command and/or a reflex resulting from muscle afferents modulates arterial baroreflex function using a decerebrate cat model. The baroreflex was evoked by stimulating the aortic depressor nerve (ADN) at the onset of spontaneous muscle contraction (to test the possible influence of central command) and during electrically evoked contraction or passive stretch (to test the possible influence of the muscle reflex). When the ADN was stimulated at rest, heart rate and arterial blood pressure decreased by 40 +/- 2 beats/min and 11 +/- 1 mmHg, respectively. The baroreflex bradycardia was attenuated to 55 +/- 4% at the onset of spontaneous contraction. The attenuating effect on the baroreflex bradycardia was not observed at the onset and middle of electrically evoked contraction or passive stretch. The depressor response to ADN stimulation was identical among resting and any muscle interventions. The inhibition of the baroreflex bradycardia during spontaneous contraction was seen after beta-adrenergic blockade but abolished by muscarinic blockade, suggesting that the bradycardia is mainly evoked through cardiac vagal outflow. We conclude that central command, produced within the caudal diencephalon and the brain stem, selectively inhibits the cardiac component, but not the vasomotor component, of the aortic baroreflex at the onset of spontaneous exercise.  相似文献   

10.
We compared sympathetic and circulatory responses between kidney and skeletal muscles during fictive locomotion evoked by electrical stimulation of the mesencephalic locomotor region (MLR) in decerebrate and paralyzed rats (n = 8). Stimulation of the MLR for 30 s at 40-microA current intensity significantly increased arterial pressure (+38 +/- 6 mmHg), triceps surae muscle blood flow (+17 +/- 3%), and both renal and lumbar sympathetic nerve activities (RSNA +113 +/- 16%, LSNA +31 +/- 7%). The stimulation also significantly decreased renal cortical blood flow (-18 +/- 6%) and both renal cortical and triceps surae muscle vascular conductances (RCVC -38 +/- 5%, TSMVC -17 +/- 3%). The sympathetic and vascular conductance changes were significantly dependent on current intensity for stimulation at 20, 30, and 40 microA. The changes in LSNA and TSMVC were significantly less than those in RSNA and RCVC, respectively, at all current intensities. At the early stage of stimulation (0-10 s), decreases in RCVC and TSMVC were significantly correlated with increases in RSNA and LSNA, respectively. These data demonstrate that fictive locomotion induces less vasoconstriction in skeletal muscles than in kidney because of less sympathetic activation. This suggests that a neural mechanism mediated by central command contributes to blood flow distribution by evoking differential sympathetic outflow during exercise.  相似文献   

11.
Normal children have a less collapsible upper airway in response to subatmospheric pressure administration (P(NEG)) during sleep than normal adults do, and this upper airway response appears to be modulated by the central ventilatory drive. Children have a greater ventilatory drive than adults. We, therefore, hypothesized that children have increased neuromotor activation of their pharyngeal airway during sleep compared with adults. As infants have few obstructive apneas during sleep, we hypothesized that infants would have an upper airway that was resistant to collapse. We, therefore, compared the upper airway pressure-flow (V) relationship during sleep between normal infants, prepubertal children, and adults. We evaluated the upper airway response to 1). intermittent, acute P(NEG) (infants, children, and adults), and 2). hypercapnia (children and adults). We found that adults had a more collapsible upper airway during sleep than either infants or children. The children exhibited a vigorous response to both P(NEG) and hypercapnia during sleep (P < 0.01), whereas adults had no significant change. Infants had an airway that was resistant to collapse and showed a very rapid response to P(NEG). We conclude that the upper airway is resistant to collapse during sleep in infants and children. Normal children have preservation of upper airway responses to P(NEG) and hypercapnia during sleep, whereas responses are diminished in adults. Infants appear to have a different pattern of upper airway activation than older children. We speculate that the pharyngeal airway responses present in normal children are a compensatory response for a relatively narrow upper airway.  相似文献   

12.
Heterogeneity of airway constriction and regional ventilation in asthma are commonly studied under the paradigm that each airway's response is independent from other airways. However, some paradoxical effects and contradictions in recent experimental and theoretical findings suggest that considering interactions among serial and parallel airways may be necessary. To examine airway behavior in a bronchial tree with 12 generations, we used an integrative model of bronchoconstriction, including for each airway the effects of pressure, tethering forces, and smooth muscle forces modulated by tidal stretching during breathing. We introduced a relative smooth muscle activation factor (T(r)) to simulate increasing and decreasing levels of activation. At low levels of T(r), the model exhibited uniform ventilation and homogeneous airway narrowing. But as T(r) reached a critical level, the airway behavior suddenly changed to a dual response with a combination of constriction and dilation. Ventilation decreased dramatically in a group of terminal units but increased in the rest. A local increase of T(r) in a single central airway resulted in full closure, while no central airway closed under global elevation of T(r). Lung volume affected the response to both local and global stimulation. Compared with imaging data for local and global stimuli, as well as for the time course of airway lumen caliber during bronchoconstriction recovery, the model predictions were similar. The results illustrate the relevance of dynamic interactions among serial and parallel pathways in airway interdependence, which may be critical for the understanding of pathological conditions in asthma.  相似文献   

13.
This paper reviewed in short neural and humoral factors which might be responsible for inducing exercise hyperpnea. As one of the neural factors afferent signals which arise in the exercising limbs and are transmitted via group III or IV high threshold sensory fibres were involved. The other neural factor is command signals originating in the central nervous system and being fed onto the respiratory center. Hypothalamic locomotor region is assumed to be a possible locus to integrate these peripheral and central neural signals. There are enough evidences to believe that humoral factors mediated via cardiac output is also essential for the hyperpnea. Changes in VCO2 is well correlated with those of VE in dynamic as well as in steady-state response. Oscillations in PaCO2 can be assumed to play a role to link metabolic CO2 changes to those in ventilation. Thus, no single factor can explain the whole process of exercise hyperpnea. Poon's optimization model may give a key to integrate complicated and coflicting experimental results in a unique concept.  相似文献   

14.
The cardiovascular adaptation at the onset of voluntary static exercise is controlled by the autonomic nervous system. Two neural mechanisms are responsible for the cardiovascular adaptation: one is central command descending from higher brain centers, and the other is a muscle mechanosensitive reflex from activation of mechanoreceptors in the contracting muscles. To examine which mechanism played a major role in producing the initial cardiovascular adaptation during static exercise, we studied the effect of intravenous administration of gadolinium (55 micromol/kg), a blocker of stretch-activated ion channels, on the increases in heart rate (HR) and mean arterial blood pressure (MAP) at the onset of voluntary static exercise (pressing a bar with a forelimb) in conscious cats. HR increased by 31 +/- 5 beats/min and MAP increased by 15 +/- 1 mmHg at the onset of voluntary static exercise. Gadolinium affected neither the baseline values nor the initial increases of HR and MAP at the onset of exercise, although the peak force applied to the bar tended to decrease to 65% of the control value before gadolinium. Furthermore, we examined the effect of gadolinium on the reflex responses in HR and MAP (18 +/- 7 beats/min and 30 +/- 6 mmHg, respectively) during passive mechanical stretch of a forelimb or hindlimb in anesthetized cats. Gadolinium significantly blunted the passive stretch-induced increases in HR and MAP, suggesting that gadolinium blocks the stretch-activated ion channels and thereby attenuates the reflex cardiovascular responses to passive mechanical stretch of a limb. We conclude that the initial cardiovascular adaptation at the onset of voluntary static exercise is predominantly induced by feedforward control of central command descending from higher brain centers but not by a muscle mechanoreflex.  相似文献   

15.
The pedunculopontine nucleus (PPN) has previously been implicated in central command regulation of the cardiorespiratory adjustments that accompany exercise. The current study was executed to begin to address the potential role of the PPN in the regulation of cardiorespiratory adjustments evoked by muscle contraction. Extracellular single-unit recording was employed to document the responses of PPN neurons during static muscle contraction. Sixty-four percent (20/31) of neurons sampled from the PPN responded to static muscle contraction with increases in firing rate. Furthermore, muscle contraction-responsive neurons in the PPN were unresponsive to brief periods of hypotension but were markedly activated during chemical disinhibition of the caudal hypothalamus. A separate sample of PPN neurons was found to be moderately activated during systemic hypoxia. Chemical disinhibition of the PPN was found to markedly increase respiratory drive. These findings suggest that the PPN may be involved in modulating respiratory adjustments that accompany muscle contraction and that PPN neurons may have the capacity to synthesize muscle reflex and central command influences.  相似文献   

16.
Chronic heart failure (CHF) is well known to be associated with both an enhanced chemoreceptor reflex and an augmented cardiac "sympathetic afferent reflex" (CSAR). The augmentation of the CSAR may play an important role in the enhanced chemoreceptor reflex in the CHF state because the same central areas are involved in the sympathetic outputs of both reflexes. We determined whether chemical and electrical stimulation of the CSAR augments chemoreceptor reflex function in normal rats. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The chemoreceptor reflex was tested by unilateral intra-carotid artery bolus injection of potassium cyanide (KCN) and nicotine. We found that 1) left ventricular epicardial application of capsaicin increased the pressor responses and the RSNA responses to chemoreflex activation induced by both KCN and nicotine; 2) when the central end of the left cardiac sympathetic nerve was electrically stimulated, both the pressor and the RSNA responses to chemoreflex activation induced by KCN were increased; 3) pretreatment with intracerebroventricular injection of losartan (500 nmol) completely prevented the enhanced chemoreceptor reflex induced by electrical stimulation of the cardiac sympathetic nerve; and 4) bilateral microinjection of losartan (250 pmol) into the nucleus tractus solitarii (NTS) completely abolished the enhanced chemoreceptor reflex by epicardial application of capsaicin. These results suggest that both the chemical and electrical stimulation of the CSAR augments chemoreceptor reflex and that central ANG II, specially located in the NTS, plays a major role in these reflex interactions.  相似文献   

17.
Previous work has suggested that end-stage renal disease (ESRD) patients may have an exaggerated sympathetic nervous system (SNS) response during exercise. We hypothesized that ESRD patients have an exaggerated blood pressure (BP) response during moderate static handgrip exercise (SHG 30%) and that the exaggerated BP response is mediated by SNS overactivation, characterized by augmented mechanoreceptor activation and blunted metaboreceptor control, as has been described in other chronic diseases. We measured hemodynamics and muscle sympathetic nerve activity (MSNA) in 13 ESRD and 16 controls during: 1) passive hand movement (PHM; mechanoreceptor isolation); 2) low-level rhythmic handgrip exercise (RHG 20%; central command and mechanoreceptor activation); 3) SHG 30%, followed by posthandgrip circulatory arrest (PHGCA; metaboreceptor activation); and 4) cold pressor test (CPT; nonexercise stimulus). ESRD patients had exaggerated increases in systolic BP during SHG 30%; however, the absolute and relative increase in MSNA was not augmented, excluding SNS overactivation as the cause of the exaggerated BP response. Increase in MSNA was not exaggerated during RHG 20% and PHM, demonstrating that mechanoreceptor activation is not heightened in ESRD. During PHGCA, MSNA remained elevated in controls but decreased rapidly to baseline levels in ESRD, indicative of markedly blunted metaboreceptor control of MSNA. MSNA response to CPT was virtually identical in ESRD and controls, excluding a generalized sympathetic hyporeactivity in ESRD. In conclusion, ESRD patients have an exaggerated increase in SBP during SHG 30% that is not mediated by overactivation of the SNS directed to muscle. SBP responses were also exaggerated during mechanoreceptor activation and metaboreceptor activation, but without concomitant augmentation in MSNA responses. Metaboreceptor control of MSNA was blunted in ESRD, but the overall ability to mount a SNS response was not impaired. Other mechanisms besides SNS overactivation, such as impaired vasodilatation, should be explored to explain the exaggerated exercise pressor reflex in ESRD.  相似文献   

18.
A central motor command arising from the mesencephalic locomotor region (MLR) is widely believed to be one of the neural mechanisms that reset the baroreceptor reflex upward during exercise. The nucleus tractus solitarius (NTS), a dorsal medullary site that receives input from baroreceptors, may be the site where central command inhibits baroreceptor input during exercise. We, therefore, examined the effect of electrical stimulation of the MLR on the impulse activity of cells in the NTS in decerebrate paralyzed cats. Of 129 NTS cells tested for baroreceptor input by injection of phenylephrine (7-25 microg/kg iv) or inflation of a balloon in the carotid sinus, 58 were stimulated and 19 were inhibited. MLR stimulation (80-150 microA) inhibited the discharge of 48 of the 58 cells stimulated by baroreceptor input. MLR stimulation had no effect on the discharge of the remaining 10 cells, each of which displayed no spontaneous activity. In contrast to the 77 NTS cells responsive to baroreceptor input, there was no change in activity of 52 cells when arterial pressure was increased by phenylephrine injection or balloon inflation. MLR stimulation activated each of the 52 NTS cells. For 23 of the cells, the onset latency to MLR stimulation was clearly discernable, averaging 6.4 +/- 0.4 ms. Our findings provide electrophysiological evidence for the hypothesis that the MLR inhibits the baroreceptor reflex by activating NTS interneurons unresponsive to baroreceptor input. In turn, these interneurons may release an inhibitory neurotransmitter onto NTS cells receiving baroreceptor input.  相似文献   

19.
20.
Previous studies suggest that the blood pressure response to static contraction is greater than that caused by dynamic exercise. In anesthetized cats, however, pressor responses to electrically induced static and dynamic contraction of the same muscle group are similar during equivalent workloads and peak tension development [i.e., similar tension-time index (TTI)]. To determine if the same relationship exists in humans, where contraction is voluntary and central command is present, dynamic (180 s; 1/s) and static (90 s) contractions at 30% of maximal voluntary contraction (MVC) were performed. Dynamic contraction also was repeated at the same TTI for 90 s at 60% MVC. Mean arterial pressure (MAP), heart rate (HR), cardiac output (CO), MAP during postexercise arterial occlusion (an index of the metaboreceptor-induced activation of the exercise pressor reflex), and relative perceived exertion (RPE) (an index of central command) were assessed. No differences in these variables were found between static and dynamic contraction at a tension of 30% MVC. During dynamic contraction at 60% MVC, changes in MAP (16 +/- 3 vs. 19 +/- 4 mmHg) and absolute HR (92 +/- 6 vs. 69 +/- 5 beats/min), CO (7.9 +/- 0.4 vs. 6.3 +/- 0.3 l/min), RPE (16 +/- 1 vs. 13 +/- 1), and MAP during postexercise arterial occlusion (115 +/- 3 vs. 100 +/- 4 mmHg) were greater than during static contraction (P < 0.05). Thus increases in MAP and HR, activation of central command, and muscle metabolite-induced stimulation of the exercise pressor reflex during static and dynamic contraction in humans seem to be similar when peak tension and TTI are equal. Augmented responses to dynamic contraction at 60% MVC are likely related to greater activation of these two mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号