首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Kong L  Choi RC  Xie HQ  Wang X  Peng G  Xie Z  Tsim KW  Jing N 《Life sciences》2011,88(13-14):590-597
AimsImmunoglobulin superfamily (IgSF) proteins play a critical role in development of the nervous system. Here, a new member of IgSF gene family was cloned from rat brain, which was subsequently identified as rat homolog of Drosophila Kirre. This new molecule was named as rat Kirre (rKirre). We aimed to reveal the developmental expression of rKirre, both at mRNA and protein levels, in the central nervous system. The deduced amino acid sequence of rKirre showed a putative PDZ binding motif at the C-terminus, which provided a rationale for analyzing the co-localization of rKirre and post-synaptic density protein 95 (PSD-95) in cultured rat cortical neurons.Main methodscDNA library screening was used in the isolation of cDNA. Northern blotting and Western blotting were used to reveal the levels of rKirre expression. In situ hybridization and immuno-fluorescent staining were used to determine the localization of rKirre.Key findingsThe rKirre gene was found to be highly expressed in the cerebrum, hippocampus, cerebellum, brain stem and spinal cord of adult rats. In parallel, the protein level of rKirre was also increased in a developing cerebral cortex. In cultured rat cortical neurons, the amount of rKirre was significantly increased during neuronal differentiation. Immuno-cytofluorescent staining indicated that rKirre was present along the neurites of cortical neurons, and was co-localized with PSD-95.SignificanceThese results suggested that rKirre might play an essential role in neuronal differentiation and development in the central nervous system.  相似文献   

4.
5.
Drosophila has proved to be a valuable system for studying the structure and function of ion channels. However, relatively little is known about the regulation of ion channels, particularly that of Ca2+ channels, in Drosophila. Physiological and pharmacological differences between invertebrate and mammalian L-type Ca2+ channels raise questions on the extent of conservation of Ca2+ channel modulatory pathways. We have examined the role of cyclic adenosine monophosphate (cAMP) cascade in modulating the dihydropyridine (DHP)-sensitive Ca2+ channels in the larval muscles of Drosophila, using mutations and drugs that disrupt specific steps in this pathway. The L-type (DHP-sensitive) Ca2+ channel current was increased in the dunce mutants, which have high cAMP concentration owing to cAMP-specific phosphodiesterase (PDE) disruption. The current was decreased in the rutabaga mutants, where adenylyl cyclase (AC) activity is altered thereby decreasing the cAMP concentration. The dunce effect was mimicked by 8-Br-cAMP, a cAMP analog, and IBMX, a PDE inhibitor. The rutabaga effect was rescued by forskolin, an AC activator. H-89, an inhibitor of protein kinase-A (PKA), reduced the current and inhibited the effect of 8-Br-cAMP. The data suggest modulation of L-type Ca2+ channels of Drosophila via a cAMP-PKA mediated pathway. While there are differences in L-type channels, as well as in components of cAMP cascade, between Drosophila and vertebrates, main features of the modulatory pathway have been conserved. The data also raise questions on the likely role of DHP-sensitive Ca2+ channel modulation in synaptic plasticity, and learning and memory, processes disrupted by the dnc and the rut mutations.  相似文献   

6.
The inactivation of calcium channels in mammalian pituitary tumor cells (GH3) was studied with patch electrodes under voltage clamp in cell-free membrane patches and in dialyzed cells. The calcium current elicited by depolarization from a holding potential of -40 mV passed predominantly through one class of channels previously shown to be modulated by dihydropyridines and cAMP-dependent phosphorylation (Armstrong and Eckert, 1987). When exogenous calcium buffers were omitted from the pipette solution, the macroscopic calcium current through those channels inactivated with a half time of approximately 10 ms to a steady state level 40-75% smaller than the peak. Inactivation was also measured as the reduction in peak current during a test pulse that closely followed a prepulse. Inactivation was largely reduced or eliminated by (a) buffering free calcium in the pipette solution to less than 10(-8) M; (b) replacing extracellular calcium with barium; (c) increasing the prepulse voltage from +10 to +60 mV; or (d) increasing the intracellular concentration of cAMP, either 'directly' with dibutyryl-cAMP or indirectly by activating adenylate cyclase with forskolin or vasoactive intestinal peptide. Thus, inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells only occurs when membrane depolarization leads to calcium ion entry and intracellular accumulation.  相似文献   

7.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   

8.
1. A dihydropyridine-sensitive calcium channel complex was solubilized from gastric mucosal cell membranes and purified by affinity chromatography on wheat germ agglutinin. 2. The calcium channel complex labeled with [3H]PN200-110, when reconstituted into phosphatidylcholine vesicles, exhibited active 45Ca2+ uptake into intravesicular space as evidenced by La3+ displacement and osmolarity studies. The channel complex responded in a dose-dependent manner to dihydropyridine calcium antagonist, PN200-110, which at 0.5 microM exerted maximal inhibitory effect of 66% in 45Ca2+ uptake. 3. The uptake of 45Ca2+ into vesicle-reconstituted gastric mucosal calcium channel complex was inhibited by GM1-ganglioside. Maximum inhibitory effect was achieved at 10-15 nM GM1, at which point a 74% decrease in 45Ca2+ uptake occurred. Furthermore, GM1 also inhibited dihydropyridine binding to gastric mucosal membranes, indicating the extracellular orientation of calcium channel domains for GM1. 4. The ability of GM1 to modulate the intracellular calcium levels may be an important feature in gastric mucosal protection by this ganglioside.  相似文献   

9.
Corticosteroid receptors were demonstrated in the medial hypothalamus, the hippocampus and the parietal cortex of the rat while no such receptors were found in the hypophysis, the amygdala and the anterior hypothalamus. The findings suggest the role of extrahypothalamic regions in the perception of corticosteroid feedback as well as in the regulation of the hypothalamo-hypophysial-adrenal function and do not support the assumption that corticosteroids would inhibit corticotrophin secretion by acting directly on the hypophysis.  相似文献   

10.
Calcium channels and channelopathies of the central nervous system   总被引:14,自引:0,他引:14  
Several inherited human neurological disorders can be caused by mutations in genes encoding Ca2+ channel subunits. This review deals with known human and mouse calcium channelopathies of the central nervous system (CNS). The human diseases comprise: 1) a recessive retinal disorder, X-linked congenital stationary night blindness, associated with mutations in the CACNA1F gene, encoding α11.4 subunits of L-type channels; and 2) a group of rare allelic autosomal dominant human neurological disorders including familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6, all associated with mutations in the CACNA1A gene, encoding α12.1 subunits of P/Q-type calcium channels. Mutations at the mouse orthologue of the CACNA1A gene cause a group of recessive neurological disorders, including the tottering, leaner, and rocker phenotypes with ataxia and absence epilepsy, and the rolling Nagoya phenotype with ataxia without seizures. Two other spontaneous mouse mutants with ataxia and absence epilepsy, lethargic and stargazer, have mutations in genes encoding a calcium channel auxiliary β subunit and a putative calcium channel auxiliary γ subunit. For each channelopathy, the review describes disease phenotype, channel genotype, and known functional consequences of the pathological mutations; in some cases, it also describes working hypothesis and/or speculations addressing the challenging question of how the alterations in channel function lead to selective cellular dysfunction and disease.  相似文献   

11.
Distribution of glutamine synthetase in the rat central nervous system.   总被引:25,自引:0,他引:25  
The results of a light microscopic immunohistochemical study of glutamine synthetase in rat nervous system are presented. In all sites studied the enzyme was confined to astrocytes. Except for trace amounts in ependymal cells, the enzyme was not observed in other cells of the nervous system including neurons, choroid plexus, third ventricular tanycytes, subependymal cells and mesodermally-derived elements. The intensity of astrocyte staining varied in different regions with the greatest degree noted in the hippocampus and cerebellar cortex while the least was noted in brain stem, deep cerebellar nuclei and spinal cord. The glutamine synthetase content correlated well with sites of suspected glutamergic activity in keeping with the view of a critical role of astrocytes in the regulation of the putative neurotransmitter glutamic acid.  相似文献   

12.
The optimal conditions for histochemical demonstration of NAG activity in the cerebrum, diencephalon, midbrain, cerebellum, medulla oblangata, and spinal cord were studied in a series of 37 Wistar rats of either sex. The following more important results were obtained: Each CNS zone required a definite methodlogical approach. Optimal fixation for most structures was achieved after 2 h treatment with formol-calcium and subsequent immersion of tissue blocks in formol-calcium 0,88 M saccharose. By this fixation technique it was possible to preserve high enzyme activity and good tissue structure. Only for the large pyramidal cells of the cerebral cortex the method of Holt provided optimal fixation. Formol-calcium-saccharose mixture and pure 0,88 M saccharose produced the opposide osmotic effect on nervous tissue previously fixed with formol-calcium: the former induced tissue shrinkage, the latter edema. The use of hexazonium p-rosaniline coupler prompted preliminary alcohol treatment of sections and introduction of 0.1 M acetate buffer in the incubation solution. Acetate buffer concentrations lower than 0.2 M diminished the diffuse cytoplasmic coloration and permitted a clear-cut demonstration of the lysosomal reaction. Ample information on the distribution of NAG activity in the CNS was obtained by using fast garnet GBC coupler and 0.1 M citrate buffer. Manganese chloride in a 0.2 mM concentration activates the reaction. The distribution of NAG reaction product in the cells of the different sections of the CNS was studied. The distribution of NAG reaction product in the cells of the different sections of the CNS was studied. The neurons, glial cells, and blood vessels showed positive reaction. Strongest activity was reported for the neurons of the supraoptic and paraventricular necleus, the epithelial cells of the chorioid plexus, nucleus ruber of the mesencephalon, and the vascular wall pericytes.  相似文献   

13.
Based on the evidence that the antinociceptive effects of acetaminophen could be mediated centrally, tissue distribution of the drug after systemic administration was determined in rat anterior and posterior cortex, striatum, hippocampus, hypothalamus, brain stem, ventral and dorsal spinal cord. In a first study, rats were treated with acetaminophen at 100, 200 or 400 mg/kg per os (p.o.), and drug levels were determined at 15, 45, 120, 240 min by high performance liquid chromatography (HPLC) coupled with electrochemical detection (ED). In a second study, 45 min after i.v. administration of [3H]acetaminophen (43 microCi/rat; 0.65 microg/kg), radioactivity was counted in the same structures, plus the septum, the anterior raphe area and the cerebellum. Both methods showed a homogeneous distribution of acetaminophen in all structures studied. Using the HPLC-ED method, maximal distribution appeared at 45 min. Tissue concentrations of acetaminophen then decreased rapidly except at the dose of 400 mg/kg where levels were still high 240 min after administration, probably because of the saturation of clearance mechanisms. Tissue levels increased with the dose up to 200 mg/kg and then leveled off up to 400 mg/kg. Using the radioactive method, it was found that the tissue/blood ratio was remarkably constant throughout the CNS, ranking from 0.39 in the dorsal spinal cord to 0.46 in the cerebellum. These results, indicative of a massive impregnation of all brain regions, are consistent with a central antinociceptive action of acetaminophen.  相似文献   

14.
The distribution of dynorphin in the central nervous system was investigated in rats pretreated with relatively high doses (300–400 μg) of colchicine administered intracerebroventricularly. To circumvent the problems of antibody cross-reactivity, antisera were generated against different portions as well as the full dynorphin molecule (i.e., residues 1–13, 7–17, or 1–17). For comparison, antisera to [Leu]enkephalin (residues 1–5) were also utilized. Dynorphin was found to be widely distributed throughout the neuraxis. Immunoreactive neuronal perikarya exist in hypothalamic magnocellular nuclei, periaqueductal gray, scattered reticular formation sites, and other brain stem nuclei, as well as in spinal cord. Additionally, dynorphin-positive fibers or terminals occur in the cerebral cortex, olfactory bulb, nucleus accumbens, caudate-putamen, globus pallidus, hypothalamus, substantia nigra, periaqueductal gray, many brain stem sties, and the spinal cord. In many areas studied, dynorphin and enkephalin appeared to form parallel but probably separate anatomical systems. The results suggest that dynorphin occurs in neuronal systems that are immunocytochemically distinct from those containing other opioid peptides.  相似文献   

15.
Administration of Ca-entry blockers with different chemical structure before the braining sessions produced the reduction of memory retention in mice and rats in the one-trial passive avoidance tests. This effect was absent in animals treated immediately after training test. Nootropic drugs piracetam and oxiracetam corrected the retention of memory when injected just after training test. Chronic treatment of rats with increasing doses of the nootropic drugs produced about two-fold tissue-specific elevation in the density of DHP-receptors, associated with L-type Ca-channels in synaptosomal membranes of rat cerebral cortex. Maximal effect was observed in a dose of 10 mg/kg. Diltiazem, administrated in a dose of 10 mg/kg, produced about two-fold decrease in the receptors density measured 24 hrs after the first injection. Oxiracetam (10 mg/kg) completely antagonized the effect of Ca-entry blocker. These data imply that nootropic action of piracetam and oxiracetam is mediated by L-type Ca-channels.  相似文献   

16.
Monoclonal antibodies that recognize the alpha 2 delta subunits of calcium channels from skeletal muscle immunoprecipitate a complex of alpha 1, alpha 2 delta, beta, and gamma subunits. They also immunoprecipitate 64% of rabbit brain dihydropyridine-sensitive calcium channels followed by immunoprecipitation reveals alpha 1-, alpha 2 delta-, and beta-like subunits that have apparent molecular masses of 175, 142, and 57 kd, respectively. A polypeptide of 100 kd is also specifically immunoprecipitated. Immunocytochemical studies identify dihydropyridine-sensitive calcium channels in neuronal somata and proximal dendrites in rat brain, spinal cord, and retina. Staining of many neuronal somata is uneven, revealing relatively high densities of dihydropyridine-sensitive calcium channels at the base of major dendrites. L-type calcium channels in this location may serve to mediate long-lasting increases in intracellular calcium in the cell body in response to excitatory inputs to the dendrites.  相似文献   

17.
The brains of young adult male and female Sprague-Dawley rats were studied with the electron microscope to determine the full ultrastructural picture of two types of perivascular granular cell. One of these, referred to here as the type I cell and described by both light and electron microscopy by several authors, including ourselves, has been reported to be a mast cell (MC) almost identical to MCs outside the CNS. The other, referred to here as the type II cell and described by many authors under almost as many names, was dealt with fully by Ibrahim in several reports and regarded by him as a type of MC. It is felt that the results warrant the conclusions that the type I cells are indeed MCs, while the type II cells are closely allied to the type I cells and probably better adapted to the function they subserve in the CNS of mammals. The similarities between the two cell types probably outnumber the dissimilarities and even these have their counterparts in MCs outside the CNS. The problem of the possible confusion between the type II cells and macrophages, whether reportedly within vessel walls or in the form of modified or special 'pericytic' microglia, is discussed. It is concluded that there is no justification for regarding these cells as macrophages. Because of the similarity between the type II cells and MCs, and because of the high lipid content of the type II cells, it is suggested that these elements be called neurolipomastocytes or neurolipomastocytoid cells.  相似文献   

18.
Disruption of phospholipase C-β (PLC) by the norpA mutations of Drosophila renders flies blind by affecting the light-evoked photoreceptor potential. We report here that the norpA-coded PLC modulates the 1,4-dihydropyridine (DHP)-sensitive Ca2+ channels in larval muscles. The DHP-sensitive current was reduced in the norpA mutants. Application of 1 μM phorbol 12-myristate 13-acetate (TPA) and 1 μM phorbol 12,13-didecanoate (PDD), activators of protein kinase C (PKC), rescued the current in the mutant fibers without significantly affecting the normal current. 4α-phorbol 12,13-didecanoate (4αPDD), an inactive analog of PDD, did not affect either the normal or the mutant current. One micromolar bisindolylmaleimide (BIM), an inhibitor of PKC, reduced the current in the normal fibers without affecting the mutant current. 300 μM sn-1,2-dioctanoyl-glycerol (DOG), an analog of diacylglycerol (DAG), increased the current in the mutant fibers. These experiments suggest that the DHP-sensitive Ca2+ channels in Drosophila may be modulated by the PLC-DAG-PKC pathway, and that the same PLC isozyme which is involved in phototransduction in the adult flies may also modulate muscle Ca2+ channels in the larval stage of development. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 265–275, 1997  相似文献   

19.
David G. Nicholls 《BBA》2009,1787(11):1416-41170
The ability of isolated brain mitochondria to accumulate, store and release calcium has been extensively characterized. Extrapolation to the intact neuron led to predictions that the in situ mitochondria would reversibly accumulate Ca2+ when the concentration of the cation in the vicinity of the mitochondria rose above the ‘set-point’ at which uptake and efflux were in balance, storing Ca2+ as a complex with phosphate, and slowly releasing the cation when plasma membrane ion pumps lowered the cytoplasmic free Ca2+. Excessive accumulation of the cation was predicted to lead to activation of the permeability transition, with catastrophic consequences for the neuron. Each of these predictions has been confirmed with intact neurons, and there is convincing evidence for the permeability transition in cellular Ca2+ overload associated with glutamate excitotoxicity and stroke, while the neurodegenerative disease in which possible defects in mitochondrial Ca2+ handling have been most intensively investigated is Huntington's Disease. In this brief review evidence that mitochondrial Ca2+ transport is relevant to neuronal survival in these conditions will be discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号