首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cladoceran in situ feeding rates on natural bacteria labelledwith [methyl-3H] were studied in parallel with feeding ratedeterminations on 14C-labelled Chlorella in a hypertrophic subtropicalreservoir (Lake Hartbeespoort) through spring and summer (1986/87).Community filtration rates (CFR5) on bacteria and algae weresimilar, but selection for Chlorella (relative to natural bacteria)increased from midsummer in association with declining bacterialdensity and increasing dominance of ‘inedible’ componentsof the natural phytoplankton. Species-specific filtration rates(SSFRs) were determined for Daphnia pulexllongispina, Ceriodaphniareticulata, Diaphanosoma excisum, Bosmina longirostris and Moinamicrura during their respective seasonal occurrence in the studyperiod. SSFRs on algae and bacteria increased with body length(L, mm) in all species apart from Bosmina. Species-specificdifferences in absolute feeding rate (FR, ml animal–1day–1), the slope of the FR-L relationship and bacteriaselectivity were evident. The feeding rate of all cladoceranson bacteria is described by the power equation FR 5.231L1.42FR values on bacteria relative to FR values on algae averaged  相似文献   

3.
The goal of this research is to enhance our knowledge of thecontributions of doliolids to the planktonic community as consumersand secondary producers. The objectives are to quantify feedingand growth rates of Dolioletta gegenbauri gonozooids at fourfood concentrations and four temperatures in order to determinetheir impact as grazers throughout the water column. Althoughdoliolids are abundant in numerous regions of the coastal ocean,and are considered to be major planktonic grazers, data on ratesof feeding and growth are scarce. Laboratory experiments wereconducted at 16.5, 20, 23.5 and 26.5°C to quantify removalof a 50:50 volumetric concentration of Thalassiosira weissflogiiand Rhodomonas sp. at four different food concentrations of20, 60, 160 and 390 µg C l–1. Results from theseexperiments suggest that clearance rates are similar at concentrationsfrom 20 to 60 µg C l –1, and decrease as the foodconcentrations increase to 160 and 390 µg C l –1.The ingestion rates increase over a range of phytoplankton concentrationsfrom 20 to 160 µg C l –1, then decrease when abnormallyhigh concentrations of 390 µg C l –1 are offered.Clearance and ingestion rates increase as temperature increasesfrom 16.5 to 26.5°C. The exponential growth rates rangefrom k = 0.2–0.7, with the lowest rates occurring at thehighest food concentration. Growth rates increase with increasingtemperature from K = 0.1–0.3 at 16.5°C to 0.45–0.7at 26.5°C. In each case, the small- and medium-sized zooidshad higher growth rates than the larger gonozooids. These resultssuggest that doliolid feeding and growth rates are a functionof environmental food concentrations and temperatures, and implythat they can be important consumers in a changing neritic environment.  相似文献   

4.
The gut fluorescence technique was used to estimate ingestionand filtration rates of the adult female copepods Paracalanusparvus, Cenlropages brachiatus and Calanus austrails, and copepoditestages 3, 4 and 5 of C.australis in the southern Benguela upwellingregion. During the study period chlorophyll concentrations withinthe upper 20 m of the water column were high, 5 µg I–1in mid-shelf waters and 15–30 µg I–1 in innershelf waters. Copepod gut pigment content was low and constantduring the day then increased sharply during the first 2 h aftersunset. Gut pigment content was 2–6 times higher duringthe night compared with daytime values. Small non-migratingcopepods (Paracalanus parvus) showed the smallest diel differencein gut pigment content and large migrating copepods (Centropagesbrachiatus and Calanus australis) the largest difference. Eggproduction rates were 20 and 50% of maximum at the mid-shelfand inner shelf stations respectively, suggesting food-limitation.Comparison of ingestion rates calculated from egg productiondata with ingestion rates calculated from gut pigment data suggestedthat the copepods were feeding omnivorously at the inner shelfstations but herbivorously at the mid-shelf stations. Assumingthat all of the phytoplankton was available as food, the nearshorecopepod assemblage grazed {small tilde}1% of the standing cropeach day, and the mid-shelf assemblage grazed 5% day–1.Because of errors and uncertainties associated with the gutfluorescence technique, the feeding impact could be underestimatedby 2–4-fold. We discuss several approaches which couldlead to more precise estimates of feeding rates. 3Present address: Marine Sciences, SUNY, Stony Brook, NY, 11794-5000,USA  相似文献   

5.
The planktonic rotifer Ascomorpha ovalis feeds on large dinoflagellates(e.g. Ceratium sp., Peridinium sp.) and is able to extract theircell contents by means of its virgate mastax. This paper presentsthe results of experiments on the feeding behaviour of laboratory-culturedAscomorpha with Cerarium furcoides as food algae. Ascomorphaare three times larger than their prey Ceratium (by volume),but with regard to total length, their prey was even 20% larger.Ascomorpha showed a hyperbolic functional response curve witha plateau of the feeding rate at 8 Ceratium cells animal–1dar–1 when concentrations of Ceratium were >100 cellsml–1. The mean handling time (time for capturing and extractingone Ceratium cell) was 3 min. The shape of the functional responsewas better described by a curvilinear model than by a rectilinearmodel. However, handling times cannot be responsible for this,since they were too short to set limits on ingestion rates.At low food concentrations, encounter rates with prey seemedto limit the feeding rates of Ascomorpha, whereas at mediumto high food concentrations, Satiation effects (lower attackrates) seemed to set limits on the feeding rates. Ascomorphashowed a significant decrease in the exploitation of singleCeratium cells at high prey concentrations. This decrease couldbe explained by a saturation effect in which the partly filledguts of Ascomorpha did not permit the total extraction of thecontents of a Ceratium cell.  相似文献   

6.
We investigated the seasonal occurrence, wet : dry : carbon: nitrogen weight ratios, population biomass, gastric pouchcontents, and rates of feeding, growth and respiration of thescyphomedusa Aurelia aurita in the central part of the InlandSea of Japan. Aurelia aurita medusae began to appear in January/Februaryas ephyrae, reached annual maximum body size in July/August,and disappeared, presumably due to death, by November. Initialslow growth in early spring was followed by a period of exponentialgrowth (mean growth rate: 0.069 d–1) between April andJuly. In the Ondo Strait, which is characterized by strong tidalmixing, the A. aurita population (mean carbon biomass: 66.0mg C m–3) overwhelmingly dominated the zooplankton-communitybiomass (mean biomass of micro- and mesozooplankton: 23.7 mgC m–3) between May and early August The gastric contentanalysis revealed that A. aurita ate almost all micro- and mesozooplankters,of which small copepods were most important. On the basis ofdigestion time for small copepods (60 min) and their abundancein the gastric pouch of field-collected A. aurita, we determinedthe weight specific feeding rates and clearance rates. The formerincreases linearly with increasing copepod abundance, but thelatter was relatively constant irrespective of the food supply.We also measured the respiration rates of A. aurita and expressedthem as functions of body weight and temperature. These physio-ecologicalparameters enabled us to construct the carbon budget of theA. aurita population typical of early summer in the Ondo Strait.Predicted population-feeding rate (6.07 mg C m–3 d–1)was higher than the population-food requirement for both metabolismand growth (4.55 mg C m–3 d–1), indicating thatfood supply was sufficient to sustain the observed growth rate.This feeding rate was equivalent to 26% of micro- and mesozooplanktonbiomass, a significant impact on zooplankton.  相似文献   

7.
Growth and feeding rates of a laboratory-reared small thecateheterotrophic dinoflagellate, Protoperidinium hirobis Abè,grown on the diatom Leptocylindrus danicus, were measured inbatch cultures. Ingestion rates were determined directly bythe enumeration of empty diatom frustules produced by dinoflagellatefeeding. Both growth and feeding rates saturated at diatom concentrationsof {small tilde} 104 cells ml–1, and reached maximum valuesof 1.7 divisions day–1 and 23 diatoms grazer–1 day–1,respectively. This rate of cell division is notably high comparedto photosynthetic dinoflagellates, which seldom grow fasterthan 1 division day–1. A maximal clearance rate of 0.5µl h–1 was measured. Mean cell size varied proportionallywith food abundance, with food-saturated cells having doublethe mean volume of food-depleted cells. Tuning of cell divisionand grazing rate patterns were also examined; while mitosisoccurred chiefly during the dark period, no diel variationsin feeding rate were detected. These rates represent the firstdirect growth and ingestion measurements to be made for a thecateheterotrophic dinoflagellate. They serve to underscore one functionthese dinoflagellates perform within the microzooplanktonicfood web: that of transforming large diatoms into particlesmore easily ingested by microzooplankters.  相似文献   

8.
Filtering rates on [3H]thymidine-labelled natural unattachedbacteria and that on [14C]bicarbonate-labelled natural planktonwhich pass through the 25 µm-mesh-size screen were measuredfor Daphnia longispina and Eodiaptomus japonicus in Lake Biwa.Errors associated with the radioisotope technique, i.e the lossof labels after feeding trials and the self-absorption of thebeta emittance of 3H, were checked and corrected for the calculationof the filtering rates. It was suggested that Daphnia collectsbacteria efficiently, although the efficiency is somewhat variabledepending on food particle composition (i.e. presence and absenceof larger particles) and feeding condition (i.e. animal densityand physical disturbance). By contrast, copepodites of Eodiaptomuswere suggested to be less efficient bacteria feeders. Food resourceexploitation strategies of these two co-existing zooplanktersare discussed.  相似文献   

9.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

10.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

11.
We conducted a long term (4 week) continuous culture studyto measure the chronic effects of UV radiation on the alga,Cryptomonas erosa, using three different fluence rates of UVradiation. We measured carbon allocation into carbohydrate,protein and lipid pools, as well as chlorophyll a concentrationsand algal and bacterial density. After 21 days, algal densityin the control and lowest UV treatment (treatment 1 = 3.4 Wm–2 UVR unweighted) was significantly lower than in thetwo highest UV treatments (treatment 2 = 14.9 W m–2 andtreatment 3 = 16.2 W m–2 UVR unweighted), and did notrecover in the following week of no UV exposure. Chlorophylla and carbohydrate content (ng algal cell–1) for the controland treatment 1 were clearly lower than treatments 2 and 3 byday 15, and did not recover by day 28. Percentage total lipidfor the control and treatment 1 also decreased compared withtreatments 2 and 3 by the end of the exposure period. However,by day 21, protein content for the control and treatment 1 wassignificantly higher than treatments 2 and 3, and demonstrateda further increase by day 28. The results were largely attributedto competition effects between C.erosa and bacteria in thesenon-axenic cultures. Bacterial density was significantly (x4)higher in the control and lowest UV treatment compared withthe two highest UV treatments. Our findings suggest a competitiveadvantage of phytoplankton over bacteria under these conditions.If UV radiation, in general, affects bacteria to a greater extentthan algae, there are likely to be changes in (i) bacterialutilization of dissolved organic matter produced by phytoplankton,(ii) competition between phytoplankton and bacteria for nutrientminerals and (iii) predation rates on bacteria by micro-flagellates.  相似文献   

12.
The effect of locomotor activity on respiration rate was studiedin the food-deprived copepod Calanus euxinus tethered to a forcesensor. The power generated by mouth appendages during cruisinglocomotion, with a frequency of 40 Hz, accounted for 0.026 and0.0031 W for metabolic and mechanical processes, respectively.To overcome total hydrodynamic drag during foraging with a meanswimming speed of 3.2 cm s–1, the copepods need 0.4 x10–3 W, equating to 1.3% of total metabolism. The lossesof mechanical energy for body propulsion amounted to 1.3 x 10–3W, whilst the cost of feeding current generation run up to 1.8x 10–3 W, or 58% of the total. Changing of locomotor activityand respiration rate during feeding was examined separatelyin tethered and free-swimming copepods. At algal concentrationof 300 µg C L–1, the magnitude of specific dynamicaction (SDA) averaged 1.2 ± 0.44 nL O2 µg C–1h–1 in copepodites V and females, with similar movingactivity before and during feeding. The contribution of SDAinto total metabolism varied from 23 to 85% in C. euxinus withlow activity level and constituted only 10% in active animals.In starved copepods, with low locomotor activity, feeding eventsstimulated the increase in frequency and total duration of locomotionwhich resulted in elevated energy expenditure enhancing the‘apparent SDA’.  相似文献   

13.
Gut clearance rates of starving and continuously feeding Acartiatonsa were estimated. During the initial 30 min the rates weresimilar (0.045 and 0.048 min–1, respectively; 14°C)but thereafter starving animals expelled the remains of theirgut contents at half the rate (0.019 min–1) of fed ones(0.048). Pigment destruction was estimated by (i) incubationexperiments over 3–4 days, (ii) silica to pigment ratioin algae and faeces and (iii) by gut filling experiments. Theincubations showed that 8% of the ingested pigments were destroyedto nonfluorescent residues during gut passage. The silica topigment ratio method gave an average of 11 % (1 –24) destructionand gut-filling experiments showed no systematic differencebetween ingestion measured as gut filling rate (fluorescence)and particle reduction. 1Present address: Kristineberg Marine Biological Station, S-45034 Fiskebäckskil, Sweden  相似文献   

14.
Phagotrophic protists are major components of pelagic food webs,both as consumers of bacterial and phytoplankton cells, andas regenerators of inorganic nutrients. In this study, we estimatedthe efficiency of ammonium regeneration by protists feedingon bacteria within natural plank-tonic assemblages, using a15N tracer method, in which the excretion of 15N-labeled ammoniumdue to grazing on 15N pre-labeled bacteria was followed overtime. We tested this approach in experiments based on the additionof heat-killed 15N-labeled bacteria to laboratory cultures andto samples of coastal seawater. During two experiments, variationin abundance of bacterivores and bacterioplankton resulted innon-constant grazing rates. Deterministic computer models thatused abundance of bacteria and protists as variables were developedto estimate best-fit values of grazing mortality (g, h–1)and of ammonium regeneration efficiency (RE, fraction of theinitial 15N label in added bacteria which is released as ammonium).Estimated ammonium RE were 0.30–0.35 for one trophic linksystems with both a monospecific culture and a mixed speciesassemblage of bacterivorous flagellates. RE was higher for multi-trophicstep food webs: 0.60 for 5 µm pre-screened coastal seawaterand 0.90 for whole coastal seawater.  相似文献   

15.
Ingestion and clearance rates, feeding behaviors and life historyvariables of the marine cladoceran Penilia avirostris were evaluatedover a range of food concentrations encountered in nature (0.01–3.0mm3 1–1 of Isochrysis galbana). Ingestion rates increasedand clearance rates decreased with increasing food concentration.No maximum feeding thresholds were observed over the range ofalgal concentrations offered. Weight-specific ingestion ratesdecreased with increasing body weight. Feeding behaviors suchas mandibular activity, abdominal claw rejections of cloggedfeeding structures and feeding appendage activity decreasedat a food level of 0.3 mm3 l–1 of l. galbana. Peniliaavirostris had very poor survivorship at extremely low (0.01mm3 l–1 and high (3.00 mm3 l–1) food levels. Mortalitywas hardly affected at food levels of 0.03–1.0 mm3 l–1Reproduction did not occur at food levels of  相似文献   

16.
Equipment is described which delivers air with concentrationsof CO2 and water vapour closely controlled in the ranges 0 to2500 ppm and 5 to 15 mb respectively, at flow rates of up to10 1 min-1, to each four leaf chambers. The leaf temperatureis controlled to ±0.5 °C and, with a light intensityof 0.3 cal cm-2 min-1 visible radiation (0.4 to 0.7 µm)leaf temperature can be maintained at 17.5 °C.The apparatusused to measure the concentration differences between the watervapour and CO2 entering and leaving the leaf chamber (used tocalculate transpiration, photosynthetic, and respiration rates)is described in detail.Results of tests, which show the necessityfor mounting a fan within the leaf chamber, are reported.Typicallight- and CO2-response curves are given for kale leaves (Brassicaoleracca var. acephala) and an attempt is made to quantify theerrors in the measurement of photosynthesis and transpiration.  相似文献   

17.
Measurements of hydrography, chlorophyll, moulting rates ofjuvenile copepods and egg production rates of adult female copepodswere made at eight stations along a transect across the Skagerrak.The goals of the study were to determine (i) if there were correlationsbetween spatial variations in hydrography, phytoplankton andcopepod production rates, (ii) if copepod egg production rateswere correlated with juvenile growth rates, and (iii) if therewas evidence of food-niche separation among co-occumng femalecopepods The 200 km wide Skagerrak had a stratified water columnin the center and a mixed water column along the margins. Suchspatial variations should lead to a dominance of small phytoplanktoncells in the center and large cells along the margins; however,during our study blooms of Gyrodinium aureolum and Ceratium(three species) masked any locally driven differences in cellsize: 50% of chla was >11 µm, 5% in the 11–50µm fraction and 45% <50 µm. averaged for allstations. Chlorophyll ranged from 0.2 to 2.5 µg l–1at most depths and stations. Specific growth rates of copepodsaveraged 0.10 day–1 for adult females and 0.27 day–1for juveniles The latter is similar to maximum rates known fromlaboratory studies, thus were probably not food-limited. Eggproduction rates were food-limited with the degree of limitationvarying among species: 75% of maximum for Centropages typicus, 50% for Calanus finmarchicus, 30% for Paracalanus parvus and 15% for Acartia longiremis and Temora longicornis. Thedegree of limitation was unrelated to female body size suggestingfood-niche separation among adults. Copepod production, summedover all species, ranged from 3 to 8 mg carbon m–3day–1and averaged 4.6 mg carbon m–1 day–1. Egg productionaccounted for 25% of the total.  相似文献   

18.
The relationships between photosynthesis and photosyntheticphoton flux densities (PPFD, P-l) were studied during a red-tideof Dinophysis norvegica (July-August 1990) in Bedford Basin.Dinophysis norvegica, together with other dinoflagellates suchas Gonyaulax digitate, Ceratium tripos, contributed {small tilde}50%of the phytoplankton biomass that attained a maximum of 16.7µg Chla 1 and 11.93 106 total cells I–1.The atomic ratios of carbon to nitrogen for D.norvegica rangedfrom 8.7 to 10.0. The photosynthetic characteristics of fractionatedphytoplankton (>30 µm) dominated by D.norvegica weresimilar to natural bloom assemblages: o (the initial slope ofthe P-l curves) ranged between 0.013 and 0.047 µg C [µgChla]–1 h–1 [µmol m s–1]–1the maximum photosynthetic rate, pBm, between 0.66 and 1.85µg C [µghla]–1 h–1; lk (the photoadaptationindex) from 14 to 69 µ,mol m–2 s–1. Carbonuptake rates of the isolated cells of D.norvegica (at 780 µmolm–2 s–1) ranged from 16 to 25 pg C cell–1h and were lower than those for C.tripos, G.digitaleand some other dinoflagellates. The variation in carbon uptakerates of isolated cells of D.norvegica corresponded with PBmof the red-tide phytoplankton assemblages in the P-l experiments.Our study showed that D.norvegica, a toxigenic dinoflagellate,was the main contributor to the primary production in the bloom.  相似文献   

19.
Ingestion, respiration, and molting loss rates were measuredover the 3 – 29°C range in Neomysis intermedia. Weightspecific rates of these physiological processes ranged from2 to 140% body C day–1 for ingestion, from 2 to 15% bodyC day–1 for respiration, and from 0.1 to 5% body C day–1for molting loss. All weight-specific rates showed a logarithmicdecrease with a logarithmic increase in body weight, and a logarithmicincrease with a linear increase in temperature below 20 or 25°C.The effect of temperature, however, was different between thephysiological rates, with a large temperature dependency foringestion (Q10 = 2.6 –3.9) and molting loss (Q10 = 2.9– 3.6) and a moderate temperature dependency for respiration(Q10 = 1.9 – 2.1). Calculated assimilation efficiencychanged with body size, but was constant over the temperaturerange examined. Allocation of assimilated materials varied witha change in temperature, reflecting the different temperaturedependence between physiological processes. It was deduced thatthe strong temperature dependency of the growth rate in N. intermediaobserved in the previous studies resulted from the large temperatureeffect on ingestion and assimilation rates, superimposed bythe different allocation of assimilated materials. 1Present address: Department of Botany, University of Tokyo,Hongo, Tokyo 113, Japan  相似文献   

20.
Diel vertical studies of zooplankton community filtration rates(CFR) were undertaken in situ over two annual cycles in a shelteredbay of Lake le Roux, a large silt-laden oligotrophic reservoirin the arid subtropics of South Africa. The grazer communitywas dominated by a copepod, Meradiaptomus meridianus, whileDaphnia gibba. D. barbara and Moina brachiara accounted forthe balance. Spot estimates of CFR varied from 0.1 to 75% d–1( = 12.2) in the upper 10 m, while depth-integrated values ranged seasonally from 0.1 to 15% d–1 ( = 7.4). Most variation in CFR was attributable toseasonal changes in grazer biomass (0–408, = 58.2 µg 1–1 or 3–1000, 360 mg m–2 dry wt), and temperature (12–22C). Thesevariables are used to construct multiple linear regression modelsfor the prediction of CFR in this system. Some higher CFR values(up to 260% d–1 were measured in wanner (up to 26.5C)surface waters with an unusually rich zooplankion (786 rg 1–1).No significant did vertical changes in CFR or grazer biomasswere observed. Both variables declined sharply with depth. Inorganicturbidity dominated the seston, and algal carbon probably accountedon average for less than about 20% of the total POC available.The feeding responses of this turbid-water community were generallyconsistent with observations made on other assemblages, apartfrom seemingly high specific filtration rates which, atypically,were inversely related to temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号