首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly arsenic resistant bacteria (27 isolates), which had a minimum inhibitory concentrations (MICs) for arsenite and arsenate of ? 40 mM and > 400 mM, respectively, were isolated from tannery wastes and agricultural soils collected in Central Thailand. On the basis of the morphological, cultural, physiological and biochemical characteristics, and on the principal ubiquinone component and 16S rRNA gene sequence analyses, they were identified as nine isolates each ofKlebsiella (Groups 1 and 8) andAcinetobacter (Groups 2, 3 and 7), four isolates each ofPseudomonas (Groups 4 and 6) andComamonas (Group 5), and one isolate ofEnterobacter (Group 9). From these 27 isolates, only one isolate, A3-3 from the genusComamonas, appeared potentially capable of oxidizing arsenite to arsenate, as determined by silver nitrate staining of arsenite agar plates after colony growth.  相似文献   

2.
Phytoremediation is considered as a novel environmental friendly technology, which uses plants to remove or immobilize heavy metals. The use of metal-resistant plant growth-promoting bacteria (PGPB) constitutes an important technology for enhancing biomass production as well as tolerance of the plants to heavy metals. In this study, we isolated twenty seven (NF1-NF27) chromium resistant bacteria. The bacteria were tested for heavy metals (Cr, Zn, Cu, Ni, Pb and Co) resistance, Cr(VI) reduction and PGPB characters (phosphate solubilization, production of IAA and siderophores). The results showed that the bacterial isolates resist to heavy metals and reduce Cr(VI), with varying capabilities. 37.14% of the isolates have the capacity of solubilizing phosphate, 28.57% are able to produce siderophores and all isolates have the ability to produce IAA. Isolate NF2 that showed high heavy metal resistance and plant growth promotion characteristics was identified by 16S rDNA sequence analysis as a strain of Cellulosimicrobium sp.. Pot culture experiments conducted under greenhouse conditions showed that this strain was able to promote plant growth of alfalfa in control and in heavy metals (Cr, Zn and Cu) spiked soils and increased metal uptake by the plants. Thus, the potential of Cellulosimicrobium sp. for both bioremediation and plant growth promotion has significance in the management of environmental pollution.  相似文献   

3.
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria capable of growing under electrokinetic conditions were isolated using an adjusted acclimation and enrichment procedure based on soil contaminated with heavy PAHs in the presence of an electric field. Their ability to degrade heavy PAHs under an electric field was individually investigated in artificially contaminated soils. The results showed that strains PB4 (Pseudomonas fluorescens) and FB6 (Kocuria sp.) were the most efficient heavy PAH degraders under electrokinetic conditions. They were re-inoculated into a polluted soil from an industrial site with a PAH concentration of 184.95 mg kg?1. Compared to the experiments without an electric field, the degradation capability of Pseudomonas fluorescens and Kocuria sp. was enhanced in the industrially polluted soil under electrokinetic conditions. The degradation extents of total PAHs were increased by 15.4 and 14.0 % in the electrokinetic PB4 and FB6 experiments (PB4 + EK and FB6 + EK) relative to the PB4 and FB6 experiments without electrokinetic conditions (PB4 and FB6), respectively. These results indicated that P. fluorescens and Kocuria sp. could efficiently degrade heavy PAHs under electrokinetic conditions and have the potential to be used for the electro-bioremediation of PAH-contaminated soil, especially if the soil is contaminated with heavy PAHs.  相似文献   

4.
Transfer of metal resistance plasmids into two pseudomonad recipients, Pseudomonas aureofaciens and Ps. putida , from soil bacteria donor populations, was investigated in agricultural soil contaminated predominantly with Zn and Cu. The putative donor and recipient numbers on selective agar were not affected by the concentration of metals in the soils, nor were the number of transconjugants. However, there were differences in transfer frequencies of Hg and Cu resistance from the different soil samples. This is the first time that transfer of Cu resistance has been observed from native bacteria present in agricultural soils.  相似文献   

5.
Glycosyl glycerides have been found in substantial amounts in Chloropseudomonas ethylicum but could not be detected in two strains of Rhodopseudomonas palustris. Rhodospirillum molischianum possibly contains small amounts of monoglycosyl diglyceride. The glycolipids of C. ethylicum have been separated into two components. One of these, glycolipid I, is a monogalactosyl diglyceride. Glycolipid II, upon acid hydrolysis, yields galactose, rhamnose, and a third, unidentified sugar. The glycolipids or total lipids of the photosynthetic bacteria examined contained saturated and monounsaturated, but none of the more highly unsaturated, fatty acids.  相似文献   

6.
Isolation and characterization of methanogenic bacteria from rice paddies   总被引:3,自引:0,他引:3  
Abstract Enrichment cultures for H2-CO2, methanol- or acetate-utilizing methanogens were prepared from two rice field soil samples. All the cultures except one acetate enrichment showed significant methane production. Pure cultures of Methanobacterium - and Methanosarcina -like organisms were isolated from H2-CO2 and methanol enrichment cultures, respectively, and were characterized for various nutritional and growth conditions. The organisms had an optimal pH range of 6.4–6.6 and a temperature optimum of 37°C. The Methanobacterium isolates were able to utilize H2-CO2 but no other substrates as sole energy source, while the Methanosarcina isolates were able to utilize methanol, methylamines or H2-CO2 as sole energy sources. Both Methanobacterium isolates and one isolate of Methanosarcina were able to use dinitrogen as the sole source of nitrogen for growth. The isolates used several sulfur compounds as sole sources of sulfur.  相似文献   

7.
A method is described for the preparative isolation of megaplasmids ranging in size from 340 to 700 kb. These plamids were isolated from chemolithoautotrophic bacteria including the species Alcaligenes, Pseudomonas, and Paracoccus. The procedure was based on alkaline sodium dodecyl sulfate lysis of the cells, followed by heat treatment, salt precipitation, several phenol extractions, dialysis steps, and proteinase and RNase treatment. The various parameters were evaluated and controlled. Hydrogen-oxidizing-ability (Hox) encoding plasmids were compared by EcoRI restriction enzyme analysis. pHG plasmids from Alcaligenes eutrophus wild-type strains appeared to be closely related; plasmids derived from the type strain TF93 and from A. hydrogenophilus exhibited major differences in restriction sites. Two cryptic plasmids harbored by Pseudomonas facilis and Paracoccus denitrificans showed scarcely detectable similarity to the plasmid species of Alcaligenes.  相似文献   

8.
9.
Two gram-negative, motile bacteria isolated from deep subsurface sediments mineralized the nitrogen-containing polyaromatic hydrocarbon quinoline under aerobic conditions and transformed quinoline to soluble intermediates under anaerobic conditions. Many aromatic compounds were also able to serve as the sole source of carbon and energy under aerobic conditions. Rapid aerobic mineralization of quinoline at concentrations as low as 0.002 microgram ml-1 indicates that these organisms possess a high-affinity uptake and utilization system, which may reflect the oligotrophic nature of deep subsurface environments. Both bacteria harbored four plasmids of identical size, ranging from 50 to 440 kilobases.  相似文献   

10.
Microorganisms found in industrial effluents and near the sites of the contamination can be used to indicate pollution and detoxify the contaminated water resources. Emergence of xenobiotic resistant bacteria among them might be potential application in bioremediation. The objective of this study was to isolate and characterize fluoride resistant bacteria from soil and water samples of different regions of India. Five isolates were recovered from different samples which were found to be fluoride resistant. Two of them effectively reduced the fluoride from their media. Through the current study it can be predicted that fluoride pollution results in selective pressure that leads to the development of fluoride resistant among bacterial populations, probably through the mechanism which involved high affinity anion binding compounds called ionophores. Resistant microbes may play a bioremediative role by transforming and concentrating these anions so that they are less available and less dangerous.  相似文献   

11.
Toxicity of heavy metals to soil bacteria   总被引:2,自引:0,他引:2  
  相似文献   

12.
Microorganisms found in industrial effluents and near the sites of the contamination can be used to indicate pollution and detoxify the contaminated water resources. Emergence of xenobiotic resistant bacteria among them might be potential application in bioremediation. The objective of this study was to isolate and characterize fluoride resistant bacteria from soil and water samples of different regions of India. Five isolates were recovered from different samples which were found to be fluoride resistant. Two of them effectively reduced the fluoride from their media. Through the current study it can be predicted that fluoride pollution results in selective pressure that leads to the development of fluoride resistant among bacterial populations, probably through the mechanism which involved high affinity anion binding compounds called ionophores. Resistant microbes may play a bioremediative role by transforming and concentrating these anions so that they are less available and less dangerous.  相似文献   

13.
In this study, we isolated bacteria from rhizosphere and endorhizophere of wheat crops of the central region of Argentina. The isolates were phenotypically characterized and the restriction patterns of 16S rDNA (ARDRA) using endonuclease AluI were analysed. Representative isolates were used to evaluate the effect of the inoculation on the growth of wheat under greenhouse conditions. The effects of plant growth-promoting bacteria on wheat plants were studied by evaluating shoot fresh and dry weights and root fresh and dry weights. One native strain increased the shoot and root dry biomass by 23% and 45% respectively. Other strains increased the shoot dry biomass. A 1.5 kb fragment of the 16S rRNA gene of one isolate was sequenced. This isolate showed high identity with different species of Pseudomonas.  相似文献   

14.
Two bacterial strains capable of utilizing dibenzofuran (DF) as a sole carbon source were isolated from soil samples of reclaimed land. The strains designated HL1 and HL7 were identified as Klebsiella sp. and Sphingomonas sp., respectively, on the basis of biochemical characteristics and the sequences of the 16S ribosomal DNA. Sphingomonas sp. strain HL7 degraded non-, mono- and also dichlorinated DF and dibenzo-p-dioxin (DD). Klebsiella sp. strain HL1 was able to degrade non- and monochlorinated DFs and DDs, but not dichlorinated ones. The metabolites formed from DF by strains HL1 and HL7 were similar to those by dioxin-degrading bacteria Sphingomonas sp. strain RW1 except for salicylic acid and catechol. Strain HL7 had a gene homologous to that encoding the dioxin dioxygenase alpha-subunit (dxnA1) gene of Sphingomonas sp. strain RW1. However, Southern hybridization analysis showed that the size of an EcoRV-digested genomic fragment involving the dioxin dioxygenase gene of strain HL7 was smaller than that of strain RW1, and that strain HL1 did not have the homologous gene. Strains HL1 and HL7 provided useful information regarding the dioxygenase genes.  相似文献   

15.
Abstract During the first stage of the preparation of mushroom compost oxygen is believed to be readily available. However we measured methane in the evoking air above the compost piles and were able to isolate thermophilic methanogenic bacteria from this compost. The isolates grow only on H2 and CO2 as energy and carbon source and do not require complex factors for growth. On the basis of nutritional and morphological characteristics these methanogens were identified as strains of Methanobacterium thermoautotrophicum .  相似文献   

16.
The objective of this study was to isolate local bacterial strains capable of removing sulphur from oil fractions without degrading the hydrocarbon. Oil biodesulphurization is an important step in combating pollution problems emanating from burning fossil fuels. Organisms which survive on oil are plentiful in local Kuwaiti soils; however, those that selectively only attack the carbon–sulphur bond are more difficult to find. Three strains were isolated based on their ability to use dibenzothiophene (DBT) as a sole source of sulphur for growth at 30 °C. Similar to other biodesulphurization organisms, the strains convert DBT to [2-hydroxybiphenyl (2-HBP) as detected by gas chromatography (GC). The specific desulphurization activity was in the range 5–13 mol 2-HBP/g-cell × h. Identification of the strains, based on 16 rRNA gene sequence similarity, showed the strains to be Rhodococcus erythropolis and Rhodococcus globerulus. The biodesulphurization activity was enhanced by promoting oxidore-ductase enzyme co-expression through the addition of a carbon source. The desulphurization was limited by the availability of DBT to the organism. Interfacial mass transfer through the aqueous-organic layer was confirmed to be a limiting factor.  相似文献   

17.
Two gram-negative, motile bacteria isolated from deep subsurface sediments mineralized the nitrogen-containing polyaromatic hydrocarbon quinoline under aerobic conditions and transformed quinoline to soluble intermediates under anaerobic conditions. Many aromatic compounds were also able to serve as the sole source of carbon and energy under aerobic conditions. Rapid aerobic mineralization of quinoline at concentrations as low as 0.002 microgram ml-1 indicates that these organisms possess a high-affinity uptake and utilization system, which may reflect the oligotrophic nature of deep subsurface environments. Both bacteria harbored four plasmids of identical size, ranging from 50 to 440 kilobases.  相似文献   

18.
New phenol degrading bacteria with high biodegradation activity and high tolerance were isolated as Burkholderia cepacia PW3 and Pseudomonas aeruginosa AT2. Both isolates could grow aerobically on phenol as a sole carbon source even at 3 g/l. The whole-cell kinetic properties for phenol degradation by strains PW3 and AT2 showed a Vmax of 0.321 and 0.253 mg/l/min/(mg protein), respectively. The metabolic pathways for phenol biodegradation in both strains were assigned to the meta-cleavage activity of catechol 2,3-dioxygenase.  相似文献   

19.
Summary Forty-one strains of non-sporulating sulfate-reducing bacteria were isolated from estuaries, deep sea and other saline environments. Their salinity requirements, utilization of significant carbon compounds, resistance against growth inhibition by Hibitane, optimal growth temperatures and growth temperature ranges were studied. The results include data on strains isolated from the Red Sea hot brine deep area. Basing on the determined characteristics the strains were identified as Desulfovibrio desulfuricans, D. vulgaris, D. salexigens, and D. desulfuricans var. aestuarii.  相似文献   

20.
Histamine is mainly produced by microorganisms that are found in fermented foods, and is frequently involved in food poisoning. Two histamine-producing bacteria were isolated from fermented fish products, anchovy sauce, and sand lance sauce by using a histidine decarboxylating medium. The species were identified as Bacillus licheniformis A7 and B. coagulans SL5. Multiplex PCR analysis showed the presence of the conserved histidine decarboxylase (hdc) gene in the chromosome of these bacteria. B. licheniformis A7 and B. coagulans SL5 produced the maximum amount of histamine (22.3±3.5 and 15.1±1.5 mg/L, respectively). As such, they were determined to be potential histamine-producing bacteria among the tested cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号