首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Scibek JJ  Plumb ME  Sodetz JM 《Biochemistry》2002,41(49):14546-14551
Human C8 is one of five components of the membrane attack complex of complement (MAC). It is composed of a disulfide-linked C8alpha-gamma heterodimer and a noncovalently associated C8beta chain. The C8alpha and C8beta subunits contain a pair of N-terminal modules [thrombospondin type 1 (TSP1) + low-density lipoprotein receptor class A (LDLRA)] and a pair of C-terminal modules [epidermal growth factor (EGF) + TSP1]. The middle segment of each protein is referred to as the membrane attack complex/perforin domain (MACPF). During MAC formation, C8alpha mediates binding and self-polymerization of C9 to form a pore-like structure on the membrane of target cells. In this study, the portion of C8alpha involved in binding C9 was identified using recombinant C8alpha constructs in which the N- and/or C-terminal modules were either exchanged with those from C8beta or deleted. Those constructs containing the C8alpha N-terminal TSP1 or LDLRA module together with the C8alpha MACPF domain retained the ability to bind C9 and express C8 hemolytic activity. By contrast, those containing the C8alpha MACPF domain alone or the C8alpha MACPF domain and C8alpha C-terminal modules lost this ability. These results indicate that both N-terminal modules in C8alpha have a role in forming the principal binding site for C9 and that binding may be dependent on a cooperative interaction between these modules and the C8alpha MACPF domain.  相似文献   

2.
Human C8 is one of five components of the membrane attack complex of complement. It is an oligomeric protein composed of three subunits (C8 alpha, C8 beta, and C8 gamma) that are derived from different genes. C8 alpha and C8 beta are homologous and both contain a pair of tandemly arranged N-terminal modules [thrombospondin type 1 (TSP1) + low-density lipoprotein receptor class A (LDLRA)], an extended middle segment referred to as the membrane attack complex/perforin region (MACPF), and a pair of C-terminal modules [epidermal growth factor (EGF) + TSP1]. During biosynthetic processing, C8 alpha and C8 gamma associate to form a disulfide-linked dimer (C8 alpha-gamma) that binds to C8 beta through a site located on C8 alpha. In this study, the location of binding sites for C8 beta and C8 gamma and the importance of the modules in these interactions were investigated by use of chimeric and truncated forms of C8 alpha in which module pairs were either exchanged for those in C8 beta or deleted. Results show that exchange or deletion of one or both pairs of modules does not abrogate the ability of C8 alpha to form a disulfide-linked dimer when coexpressed with C8 gamma in COS cells. Furthermore, each chimeric and truncated form of C8 alpha-gamma retains the ability to bind C8 beta; however, only those containing the TSP1 + LDLRA modules from C8 alpha are hemolytically active. These results indicate that binding sites for C8 beta and C8 gamma reside within the MACPF region of C8 alpha and that interaction with either subunit is not dependent on the modules. They also suggest that the N-terminal modules in C8 alpha are important for C9 binding and/or expression of C8 activity.  相似文献   

3.
Musingarimi P  Plumb ME  Sodetz JM 《Biochemistry》2002,41(37):11255-11260
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that interact to form the cytolytic membrane attack complex (MAC). It is an oligomeric protein composed of a disulfide-linked C8alpha-gamma heterodimer and a noncovalently associated C8beta chain. C8alpha and C8beta are homologous; both contain an N-terminal thrombospondin type 1 (TSP1) module, a low-density lipoprotein receptor class A (LDLRA) module, an extended central segment referred to as the membrane attack/perforin (MACPF) domain, an epidermal growth factor (EGF) module, and a second TSP1 module at the C-terminus. In this study, the segment of C8beta that confers binding specificity toward C8alpha-gamma was identified using recombinant C8beta constructs in which the N- and/or C-terminal modules were deleted or exchanged with those from C8alpha. Constructs were tested for their ability to bind C8alpha-gamma in solution and express C8 hemolytic activity. Binding to C8alpha-gamma was found to be dependent on the TSP1 + LDLRA + MACPF segment of C8beta. Within this segment, the TSP1 module and MACPF domain are principally involved and act cooperatively to mediate binding. Results from activity assays suggest that residues within this segment also mediate binding and incorporation of C8 into the MAC.  相似文献   

4.
Plumb ME  Sodetz JM 《Biochemistry》2000,39(42):13078-13083
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that interact to form the cytolytic membrane attack complex, or MAC. It is an oligomeric protein composed of three subunits (C8alpha, C8beta, C8gamma) that are products of different genes. In C8 from serum, these are arranged as a disulfide-linked C8alpha-gamma dimer that is noncovalently associated with C8beta. In this study, the site on C8alpha that mediates intracellular binding of C8gamma to form C8alpha-gamma was identified. From a comparative analysis of indels (insertions/deletions) in C8alpha and its structural homologues C8beta, C6, C7, and C9, it was determined that C8alpha contains a unique insertion (residues 159-175), which includes Cys(164) that forms the disulfide bond to C8gamma. Incorporation of this sequence into C8beta and coexpression of the resulting construct (iC8beta) with C8gamma produced iC8beta-gamma, an atypical disulfide-linked dimer. In related experiments, C8gamma was shown to bind noncovalently to mutant forms of C8alpha and iC8beta in which Cys(164)-->Gly(164) substitutions were made. In addition, C8gamma bound specifically to an immobilized synthetic peptide containing the mutant indel sequence. Together, these results indicate (a) intracellular binding of C8gamma to C8alpha is mediated principally by residues contained within the C8alpha indel, (b) binding is not strictly dependent on Cys(164), and (c) C8gamma must contain a complementary binding site for the C8alpha indel.  相似文献   

5.
Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the “membrane attack complex” (MAC). C8 contains three genetically distinct subunits (C8α, C8β, C8γ) arranged as a disulfide-linked C8α-γ dimer that is noncovalently associated with C8β. C6, C7 C8α, C8β, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8γ subunit is unrelated and belongs to the lipocalin family of proteins that display a β-barrel fold and generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8α MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8α MACPF domain disulfide-linked to C8γ (αMACPF-γ) at 2.15 Å resolution. The αMACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8γ. One is in a previously characterized 19-residue insertion (indel) in C8α and fills the entrance to the putative C8γ ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8γ β-barrel. The latter interaction induces conformational changes in αMACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X6-G-G in αMACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for refolding and pore formation by CDCs.  相似文献   

6.
Human C8 gamma is a 22 kDa subunit of complement component C8, which is one of five components (C5b, C6, C7, C8, C9) that interact to form the cytolytic membrane attack complex (MAC) of complement. C8 contains three nonidentical subunits (alpha, beta, gamma) that are products of different genes. These subunits are arranged asymmetrically to form a disulfide-linked C8 alpha-gamma dimer that is noncovalently associated with C8 beta. C8 alpha and C8 beta are homologous to C6, C7 and C9 and together these proteins comprise what is referred to as the 'MAC protein family'. By comparison, C8 gamma is distinct in that it belongs to the lipocalin family of small, secreted proteins which have the common ability to bind small hydrophobic ligands. While specific roles have been identified for C8 alpha and C8 beta in the formation and function of the MAC, a function for C8 gamma and the identity of its ligand are unknown. This review summarizes the current status of C8 gamma structure and function and the progress made from efforts to determine its role in the complement system.  相似文献   

7.
Human C8 is one of five complement components (C5b, C6, C7, C8 and C9) that interact to form the membrane attack complex (MAC). C8 is composed of a disulfide-linked C8alpha-gamma heterodimer and a noncovalently associated C8beta chain. C8alpha and C8beta are homologous to C6, C7 and C9, whereas C8gamma is the only lipocalin in the complement system. Lipocalins have a core beta-barrel structure forming a calyx with a binding site for a small molecule. In C8gamma, the calyx opening is surrounded by four loops that connect beta-strands. Loop 1 is the largest and contains Cys40 that links to Cys164 in C8alpha. To determine if these loops mediate binding of C8alpha prior to interchain disulfide bond formation in C8alpha-gamma, the loops were substituted separately and in combination for the corresponding loops in siderocalin (NGAL, Lcn2), a lipocalin that is structurally similar to C8gamma. The siderocalin-C8gamma chimeric constructs were expressed in E. coli, purified, and assayed for their ability to bind C8alpha. Results indicate at least three of the four loops surrounding the entrance to the C8gamma calyx are involved in binding C8alpha. Binding near the calyx entrance suggests C8alpha may restrict and possibly regulate access to the C8gamma ligand binding site.  相似文献   

8.
C8 is one of five complement proteins that assemble on bacterial membranes to form the lethal pore-like “membrane attack complex” (MAC) of complement. The MAC consists of one C5b, C6, C7, and C8 and 12–18 molecules of C9. C8 is composed of three genetically distinct subunits, C8α, C8β, and C8γ. The C6, C7, C8α, C8β, and C9 proteins are homologous and together comprise the MAC family of proteins. All contain N- and C-terminal modules and a central 40-kDa membrane attack complex perforin (MACPF) domain that has a key role in forming the MAC pore. Here, we report the 2.5 Å resolution crystal structure of human C8 purified from blood. This is the first structure of a MAC family member and of a human MACPF-containing protein. The structure shows the modules in C8α and C8β are located on the periphery of C8 and not likely to interact with the target membrane. The C8γ subunit, a member of the lipocalin family of proteins that bind and transport small lipophilic molecules, shows no occupancy of its putative ligand-binding site. C8α and C8β are related by a rotation of ∼22° with only a small translational component along the rotation axis. Evolutionary arguments suggest the geometry of binding between these two subunits is similar to the arrangement of C9 molecules within the MAC pore. This leads to a model of the MAC that explains how C8-C9 and C9-C9 interactions could facilitate refolding and insertion of putative MACPF transmembrane β-hairpins to form a circular pore.  相似文献   

9.
C8gamma is a 22-kDa subunit of human C8, which is one of five components of the cytolytic membrane attack complex of complement (MAC). C8gamma is disulfide-linked to a C8alpha subunit that is noncovalently associated with a C8beta chain. In the present study, the three-dimensional structure of recombinant C8gamma was determined by X-ray diffraction to 1.2 A resolution. The structure displays a typical lipocalin fold forming a calyx with a distinct binding pocket that is indicative of a ligand-binding function for C8gamma. When compared to other lipocalins, the overall structure is most similar to neutrophil gelatinase associated lipocalin (NGAL), a protein released from granules of activated neutrophils. Notable differences include a much deeper binding pocket in C8gamma as well as variation in the identity and position of residues lining the pocket. In C8gamma, these residues allow ligand access to a large hydrophobic cavity at the base of the calyx, whereas corresponding residues in NGAL restrict access. This suggests the natural ligands for C8gamma and NGAL are significantly different in size. Cys40 in C8gamma, which forms the disulfide bond to C8alpha, is located in a partially disordered loop (loop 1, residues 38-52) near the opening of the calyx. Access to the calyx may be regulated by movement of this loop in response to conformational changes in C8alpha during MAC formation.  相似文献   

10.
The eighth component of human complement (C8) is a serum protein containing three nonidentical subunits (alpha, beta, gamma) that are arranged as a disulfide-linked alpha-gamma dimer and a noncovalently associated beta chain. In earlier genetic studies, electrophoretic analysis of C8 protein polymorphisms revealed several allelic variants of alpha-gamma and beta. These were governed by separate loci designated C8A and C8B for alpha-gamma and beta, respectively. Genetic linkage analyses indicated that these loci were linked to each other and to chromosome 1 marker loci PGM1 and Rh, but it was unclear at the time if C8A was a single locus coding for a single-chain precursor form of alpha-gamma or if separate loci existed for alpha and gamma. Since evidence now indicates that alpha, beta, and gamma are encoded by separate genes, cDNA probes corresponding to each subunit were used to make direct assignments of the individual loci. Analysis of somatic cell hybrids revealed that only the alpha and beta loci are located on chromosome 1. Parallel analysis of genomic DNA digests using 5' and 3'-specific cDNA probes showed they are physically linked (less than 2.5 kb) and oriented 5' alpha-beta 3'. Further probing of the hybrid panel revealed that gamma is located on chromosome 9q. Thus, the observed genetic linkage of alpha-gamma to beta must be determined solely by alpha. In accordance with these findings, the C8 loci should now be designated C8A, C8B, and C8G for alpha, beta and gamma, respectively.  相似文献   

11.
The erythrocyte membrane inhibitor of the human terminal complement proteins, surface antigen CD59, has previously been shown to enter into a detergent-resistant complex with either the membrane-bound complex of C5b-8 or C5b-9 (Meri, S., Morgan, B. P., Davies, A., Daniels, R. H., Olavesen, M. G., Waldmann, H. and Lachmann, P. J. (1990) Immunology 71, 1-9; Rollins, S. A., Zhao, J., Ninomiya, H., and Sims, P. J. (1991) J. Immunol, 146, 2345-2351). In order to further define the interactions that underlie the complement-inhibitory function of CD59, we have examined the binding interactions between 125I-CD59 and the isolated components of human complement membrane attack complex, C5b6, C7, C8, and C9. By density gradient analysis, we were unable to detect interaction of 125I-CD59 with any of these isolated complement components in solution. Specific binding of 125I-CD59 to C8 and C9 was detected when these human complement proteins were adsorbed to either plastic or to nitrocellulose, suggesting that a conformational change that accompanies surface adsorption exposes a CD59-binding site that is normally buried in these serum proteins. The binding of 125I-CD59 to plastic-adsorbed C8 and C9 was saturable and competed by excess unlabeled CD59, with half-maximal binding observed at 125I-CD59 concentrations of 80 and 36 nM, respectively. No specific binding of 125I-CD59 was detected for surface-adsorbed human C5b6 or C7 nor was such binding observed for C8 or C9 isolated from rabbit serum. Binding of CD59 to human C8 and C9 was not mediated by the phospholipid moiety of CD59, implying association by protein-protein interaction. In order to further define the binding sites for CD59, ligand blotting with 125I-CD59 was performed after separation of C8 into its noncovalently associated subunits (C8 alpha-gamma and C8 beta) and after alpha-thrombin digestion of C9. These experiments revealed specific and saturable binding of 125I-CD59 to C8 alpha-gamma subunit (half-maximal binding at 75 nM), but not to C8 beta, and specific and saturable binding to the 37-kDa fragment (C9b) of thrombin-cleaved C9 (half-maximal binding at 35 nM), but not to the 25-kDa C9a fragment. Partial reduction of C8 alpha-gamma revealed that only C8 alpha polypeptide exhibited affinity for CD59, and no specific binding to the C8 gamma chain was detected.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Human C8 is one of five components of the cytolytic membrane attack complex of complement. It contains three subunits (C8alpha, C8beta, C8gamma) arranged as a disulfide-linked C8alpha-gamma heterodimer that is noncovalently associated with C8beta. C8gamma has the distinction of being the only lipocalin in the complement system. Lipocalins have a core beta-barrel structure forming a calyx with a binding site for a small hydrophobic ligand. A natural ligand for C8gamma has not been identified; however previous structural studies indicate C8gamma has a typical lipocalin fold that is suggestive of a ligand-binding capability. A distinctive feature of C8gamma is the division of its putative ligand binding pocket into a hydrophilic upper portion and a large hydrophobic lower cavity. Access to the latter is restricted by the close proximity of two tyrosine side chains (Y83 and Y131). In the present study, binding experiments were performed using lauric acid as a pseudoligand to investigate the potential accessibility of the lower cavity. The crystal structure of a C8gamma.laurate complex revealed that Y83 and Y131 can move to allow penetration of the hydrocarbon chain of laurate into the lower cavity. Introducing a Y83W mutation blocked access but had no effect on the ability of C8gamma to enhance C8 cytolytic activity. Together, these results indicate that the lower cavity in C8gamma could accommodate a ligand if such a ligand has a narrow hydrophobic moiety at one end. Entry of that moiety into the lower cavity would require movement of Y83 and Y131, which act as a gate at the cavity entrance.  相似文献   

13.
A Brickner  J M Sodetz 《Biochemistry》1985,24(17):4603-4607
The purified gamma subunit of the eighth component of human complement (C8) was used to characterize its site of interaction within C8 and to probe the ultrastructure of membrane-bound C5b-8 and C5b-9 complexes. Purification of gamma was accomplished by separating the disulfide-linked alpha-gamma subunit from the noncovalently associated beta chain and subjecting the former to limited reduction, alkylation, and ion-exchange chromatography. Upon mixing, purified alpha and gamma exhibited a high affinity for each other, as evidenced by their ability to form a noncovalent, equimolar complex at dilute concentrations and in the presence of excess serum albumin. Purified gamma also exhibited an affinity for C8', a previously described derivative that is functionally similar to C8 although it is composed of only alpha and beta. These results indicate that alpha possesses a specific site for interaction with gamma and that this site is preserved in the isolated subunit. Furthermore, this site remains accessible when alpha is associated with beta. In related experiments, gamma was found to specifically associate with membrane-bound C5b-8' and C5b-(8')9 complexes. These results indicate that the site for gamma interaction remains accessible on alpha in C5b-8' and is not shielded by C9 within C5b-(8')9. It is concluded that the gamma subunit of C8 is located on the surface of membrane-bound C5b-8 and C5b-9.  相似文献   

14.
S-Protein/vitronectin is a serum glycoprotein that inhibits the lytic activity of the membrane attack complex of complement, i.e., of the complex including the proteins C5b, C6, C7, C8, and C9n. We show that intact S-protein/vitronectin or its cyanogen bromide generated fragments also inhibit the hemolysis mediated by perforin from cytotoxic T-cells at 45 and 11 microM, respectively. The glycosaminoglycan binding site of S-protein/vitronectin is responsible for the inhibition, since a synthetic peptide corresponding to a part of this highly basic domain (amino acid residues 348-360) inhibits complement- as well as perforin-mediated cytolysis. In the case of C9, the synthetic peptide binds to the acidic residues occurring in its N-terminal cysteine-rich domain (residues 101-111). Antibodies raised against this particular segment react 25-fold better with the polymerized form of C9 as compared with its monomeric form, indicating that this site becomes exposed only upon the hydrophilic-amphiphilic transition of C9. Since the cysteine-rich domain of C9 has been shown to be highly conserved in C6, C7, and C8 as well as in perforin, the inhibition of the lytic activities of these molecules by S-protein/vitronectin or by peptides corresponding to its heparin binding site may be explained by a similar mechanism.  相似文献   

15.
Defining the CD59-C9 binding interaction   总被引:3,自引:0,他引:3  
CD59 is a membrane glycoprotein that regulates formation of the cytolytic membrane attack complex (MAC or C5b-9) on host cell membranes. It functions by binding to C8 (alpha chain) and C9 after their structural rearrangement during MAC assembly. Previous studies indicated that the CD59 binding site in C9 was located within a 25-residue disulfide-bonded loop, and in C8alpha was located within a 51-residue sequence that overlaps the CD59 binding region of C9. By peptide screens and the use of peptides in binding assays, functional assays, and computer modeling and docking studies, we have identified a 6-residue sequence of human C9, spanning residues 365-371, as the primary CD59 recognition domain involved in CD59-mediated regulation of MAC formation. The data also indicate that both C8alpha and C9 bind to a similar or overlapping site on CD59. Furthermore, data from CD59-peptide docking models are consistent with the C9 binding site on CD59 located at a hydrophobic pocket, putatively identified previously by CD59 mutational and modeling studies.  相似文献   

16.
A mAb directed against the CD3 molecule was used to identify a subset of CD3+, CD4-, CD8- T cells previously undefined in the peripheral lymphoid organs of the mouse. Biochemical analysis of CD3+, CD4-, CD8- splenocytes revealed that the vast majority of these cells express one of at least two distinct CD3-associated TCR gamma delta heterodimeric structures, but no detectable TCR alpha beta. One disulfide-linked heterodimer (77 kDa) is composed of two chains of 45 to 46 and 32 kDa. The latter chain was immunoprecipitated with an anti-TCR C gamma 1/C gamma 2 antiserum and was not glycosylated. An antiserum produced against a peptide corresponding to the C-terminal region of the predicted C gamma 4 gene product immunoprecipitated additional heterodimers (80 to 90 kDa). One heterodimer, composed of disulfide-linked 41- to 45-kDa protein (including a V gamma/C gamma 4 component), is expressed on a T cell hybridoma, DN-1.21, which was derived from fused splenic CD3+, CD4-, CD8- T cells. Another V gamma/C gamma 4-containing heterodimer is composed of disulfide-linked 46- to 47-kDa glycoproteins. These findings demonstrate that CD3+, CD4-, CD8- T cells present in the peripheral lymphoid organs express a variety of paired TCR gamma delta proteins. Unlike CD3+, CD4-, CD8- thymocytes, these cells express high levels of C gamma 4, but little, if any TCR alpha beta.  相似文献   

17.
The aim of this study was to identify constituents of the intermediate C5b-7 complex of human complement that mediate binding of C8 and formation of C5b-8. Analysis of interactions between purified C8 and C5, C6, or C7 indicate that C5 and C8 associate to form a dimer in solution. This interaction is specific and involves a single C5 binding site located on the beta-subunit of C8. Simultaneous interaction of C8 with C5 and C9 in solution suggests that during assembly of the cytolytic C5b-9 complex on membranes, C8 binds to C5b-7 through association of beta with C5b, after which C9 associates through interaction with the previously identified C9-specific site on the alpha-subunit. Other evidence of interaction with C5b was provided by the fact that C8 can bind purified C5b6. Also, in situ cross-linking experiments showed that within C5b-8, the beta-subunit is in close proximity to C5b. These results indicate that C8 binding to C5b-7 is mediated by a specific C5b recognition site on beta, thus explaining the requirement for this subunit in C5b-8 formation. They also reveal that C5b contains a specific site for interaction with beta.  相似文献   

18.
Complement component C5 binds to components C6 and C7 in reversible reactions that are distinct from the essentially nonreversible associations that form during assembly of the complement membrane attack complex (MAC). We previously reported that the approximately 150-aa residue C345C domain (also known as NTR) of C5 mediates these reversible reactions, and that the corresponding recombinant module (rC5-C345C) binds directly to the tandem pair of approximately 75-residue factor I modules from C7 (C7-FIMs). We suggested from these and other observations that binding of the C345C module of C5 to the FIMs of C7, but not C6, is also essential for MAC assembly itself. The present report describes a novel method for assembling a complex that appears to closely resemble the MAC on the sensor chip of a surface plasmon resonance instrument using the complement-reactive lysis mechanism. This method provides the ability to monitor individually the incorporation of C7, C8, and C9 into the complex. Using this method, we found that C7 binds to surface-bound C5b,6 with a K(d) of approximately 3 pM, and that micromolar concentrations of either rC5-C345C or rC7-FIMs inhibit this early step in MAC formation. We also found that similar concentrations of either module inhibited complement-mediated erythrocyte lysis by both the reactive lysis and classical pathway mechanisms. These results demonstrate that the interaction between the C345C domain of C5 and the FIMs of C7, which mediates reversible binding of C5 to C7 in solution, also plays an essential role in MAC formation and complement lytic activity.  相似文献   

19.
The high affinity receptor for immunoglobulin E (IgE) is a tetrameric structure (alpha beta gamma 2) consisting of non-covalently associated subunits: one IgE-binding alpha chain, one 4-fold membrane spanning beta chain, and two disulfide-linked gamma chains. Here, we have engineered alpha cDNA constructs (alpha trunc) encoding exclusively the leader peptide and the extracellular domain of the alpha subunit. Transfection of human alpha trunc into COS-7 cells resulted in the secretion of soluble IgE-binding polypeptides. By contrast, the polypeptides generated from rat and mouse alpha trunc transfections were sequestered in the endoplasmic reticulum and degraded even though they appeared to fold properly as judged by their capacity to bind IgE. Stable transfectants with human alpha trunc were obtained from a dihydrofolate reductase-deficient Chinese hamster ovary cell line. Several clones secreted substantial amounts (0.1 microgram/ml/10(6) cells) of IgE-binding polypeptides. The dissociation rate of bound IgE from this soluble truncated alpha (kappa-1 = 4.9 x 10(-6) s-1 at 25 degrees C) was characteristic of receptors on intact cells. After treatment with tunicamycin, the transfectants secreted unglycosylated 18-kDa polypeptides which could also bind IgE. These unglycosylated products had a tendency to form dimers and higher oligomers which were resistant to treatment by sodium dodecyl sulfate and reducing agents. These data demonstrate unequivocally that the extracellular domain of the alpha subunit is sufficient to mediate high affinity binding of IgE. Furthermore, posttranslational addition of carbohydrates is not required for proper folding and function of the receptor binding site. The truncated human alpha should be a suitable reagent for crystallographic analysis and for detailed analysis of the receptor binding sites.  相似文献   

20.
Human C7 is one of four homologous complement proteins that self-assemble on the nascent activation-specific fragment, C5b, thus forming the cytolytic membrane attack complex (MAC). In addition to the conserved modular core of the MAC/perforin protein family, C7 has four C-terminal domains comprising a pair of complement control protein modules (CCPs) preceding two Factor-I like modules (FIMs). It is proposed that the C7-CCPs might serve as a molecular arm for delivery of C7-FIMs to their binding site on C5b. Here we present the NMR chemical shift assignments for the C7-CCPs produced as a 14-kDa recombinant protein. Based upon triple-resonance experiments, 98 and 94 % of the backbone and side-chain (1H, 13C and 15N) assignments, respectively, have been completed. The chemical shifts and assignments have been deposited in the BioMagResBank database under accession number 18530.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号