首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. The organic acids present are citric, isocitric, and l-malic,with a small residue of unidentified acids.
  2. The diurnal variationin acidity is due chiefly to changes,in malic acid, with aparallel fluctuation shown by citric acid.Under these conditionsisocitric acid shows little change.
  3. The importance of carbondioxide during acidification is confirmed,and it is shown thatat room temperatures or higher the CO2produced in respirationis sufficient to produce maximum acidification.At lower temperaturesthe supply of CO2 limits acid production.
  4. In the absence ofoxygen no acidification occurs, but even smallquantities (approx.1 per cent.) are sufficient to cause someacid production.
  5. Completebalance-sheets are presented for acids, carbohydrates,CO2 andoxygen for leaves maintained in the dark at high andlow temperatures.As acids are produced there is a correspondingloss of carbohydrate(chiefly starch). A scheme of reactionsis suggested to explainthe experimental results.
  相似文献   

2.
  1. The effect of various Krebs cycle acids on the respirationofdisks of apple peel at various stages of maturity was measuredin a Warburg respirometer.
  2. Peel tissue from apples at thepre-climacteric and early post-climactericstages apparentlycontain sufficient of the Krebs cycle acidsused, with the exceptionof succinate, to maintain oxidativeprocesses at a maximum.
  3. The addition of malate causes a large increase in the CO2-outputof peel from post-climacteric and senescent fruit but not frompre-climacteric fruit, and a close correlation exists betweenthe climacteric and this decarboxylation of malate. The decarboxylationof malate does not affect the rate of O2-uptake of peel tissue.The possible part played by the decarboxylation of malate inthe increased CO2-output at the climacteric is discussed.
  4. Addedpyruvate is decarboxylated by the tissue at all stagesof storagelife.
  5. The decarboxylation of added malate is an aerobic fermentation,resulting in the quantitative production of acetaldehyde. Althoughthe presence of oxygen is necessary, the rate of O2-uptake isnot affected by the reaction. Pyruvate decar boxylation doesnot require the presence of oxygen.
  6. The O2-uptake of peelfrom senescent apples can be stimulatedby addition of malate,succinate, and a-ketoglutarate. No evidencewas obtained, however,of oxidation of fumarate, citrate, orpyruvate. The additionof malate to senescent tissue restoresthe lower endogenousrate of O2-uptake to that of early postclimacteric tissue.
  7. Succinate and fumarate are toxic to peel tissue at concentrationabove 0.02M.
  相似文献   

3.
A particulate fraction has been prepared from swede storagetissue which possesses both an NAD and an NADP linked iso-citricdehydrogenase. Such preparations have been used to study thepathway of oxidation of iso-citrate and the reduced coenzyme—cytochromec. reductase activity. The activity of the enzyme systems associatedwith the particles varies with pH, at pH 7.1 the NAD linkediso-citric dehydrogenase exhibits optimal activity whilst theoptimum pH for the NADP linked dehydrogenase is pH 8.3. At eitherpH the major pathway of oxidation of iso-citrate appears tobe through the NAD linked iso-citric dehydrogenase, NADH2-cytochromec. reductase system. The preparations are apparently unableto transfer electrons from reduced coenzyme, produced by dehydrogenaseactivity, to cytochrome c. at the same rate as they are ableto transfer electrons from reduced coenzyme supplied as a substrate.The results are discussed in relation to mitochondrial structureand a comparison is made with the results of work carried outon the iso-citric dehydrogenases of animal tissues.  相似文献   

4.
5.
Organic Acid Metabolism by Isolated Rhizobium japonicum Bacteroids   总被引:10,自引:2,他引:10       下载免费PDF全文
Stovall I  Cole M 《Plant physiology》1978,61(5):787-790
Rhizobium japonicum bacteroids isolated from soybean (Glycine max L.) nodules oxidized 14C-labeled succinate, pyruvate, and acetate in a manner consistent with operation of the tricarboxylic acid cycle and a partial glyoxylate cycle. Substrate carbon was incorporated into all major cellular components (cell wall + membrane, nucleic acids, and protein).  相似文献   

6.
7.
The Metabolism of Abscisic Acid   总被引:5,自引:2,他引:5  
The light-catalysed isomerization of (+)-abscisic acid (ABA)to its trans isomer during isolation from leaves was monitoredby the addition of (±)-[2-14C]ABA to the extraction medium.(+)Trans-abscisic acid (t-ABA) was found to occur naturallyin rose (Rosa arvensis) leaves at 20µg/kg fresh weight;(+)-ABA was present at 594µg/kg. (±)-[2-14D]Trans-abscisicacid was not isomerized enzymically to ABA in tomato shoots. (±)-Abscisic acid was converted by tomato shoots to awater-soluble neutral product, ‘Metabolite B’, whichwas identified as abscisyl-ß-D-glucopyranoside. When(±)-[2-14C]trans-abscisic acid in an equimolar mixturewith (±)-[2-14C}ABA was fed to tomato shoots it was convertedto its glucose ester 10 times faster than was ABA. Trans-abscisyl-ß-D-glucopyrano8ide only was formedfrom (±)-[2-14C]t-ABA in experiments lasting up to 30h. Glucosyl abscisate was formed slowly from ABA and the freeacid fraction contained an excess of the unnatural (–).ABAas did the ABA released from abscisyl-ß-D-glucopyranosideby alkaline hydrolysis. The (+).ABA appeared to be the solesource of the acidic ‘Metabolite C" previously noted. The concentrations of endogenous (+)-, (+)-[2-14C]-, and (–)-[2-14C]ABAremaining as free acid, and also in the hydrolysate of abscisyl-ß-D-glucopyranoside,were measured by the ORD, UV absorption, and scintillation spectrometryof highly purified extracts of ABA from tomato shoots whichhad been supplied with racemic [2-l4C]ABA.  相似文献   

8.
9.
10.
In starchy cotyledons of Vigna cylindrica (L.) Skeels (Mitorisasage)during seed germination, the enzymes of the glyoxylate cyclewere located in the matrix of mitochondria. Glyoxysomes wereabsent. The glyoxylate cycle in the mitochondria supplies organicacids to the tricarboxylic acid cycle. In mitochondria, isocitratelyase activity was much higher than malate synthase activity.Part of the glyoxylate thus produced in mitochondria may benonenzymatically converted to formate by H2O2 and the formatethen converted to CO2 by peroxidase or by formic dehydrogenase.The activity of superoxide dismutase, which supplies H2O2, washigher in mitochondria than in peroxisomes. The remaining glyoxylatein mitochondria is possibly converted to glycine by alanine-glyoxylateaminotransferase or transported to peroxisomes which lackedisocitrate lyase activity but had high malate synthase activity.In peroxisomes, glyoxylate may be also produced from urate,as is suggested by the fairly high activities of uricase, allantoinaseand allantoicase. Judging from the enzyme distribution, Vignaperoxisomes should be capable of producing malate, oxalacetate,citrate, isocitrate and a-ketoglutarate. 1Present address: Department of Horticulture, College of Agricultureand Animal Science, Yeugnam University, Gyeongsan 632, Korea. (Received May 27, 1987; Accepted October 7, 1987)  相似文献   

11.
Carbohydrate metabolism in Al-phosphate utilizing cells of carrot[designated as IPG, Koyama et al. (1992) Plant Cell Physiol.33: 171], which grow normally in Al-phosphate medium accompaniedby citrate excretion, was investigated. The excretion of citratewas strongly related to the availability of sucrose in medium,indicating that citrate excretion was severely limited by sucrosein medium. The ratio of the amount of carbon in the excretedcitrate to the consumed sucrose, was significantly higher inIPG cells than in wild-type cells. When 50% of the sucrose inthe medium was consumed, the ratio was 0.6% for the IPG cellsand 0.2% the wild-type cells. Under these conditions, IPG cellsshowed altered citrate synthesis metabolism, which resultedin increased citrate production. Specific activity of mitochondrialcitrate synthase was higher in IPG cells than in wild-type cells,whereas the activity of cytosolic NADP-specific isocitrate dehydrogenasewas lower in IPG cells than in wild-type cells. (Received August 27, 1998; Accepted February 21, 1999)  相似文献   

12.
13.
Bloom AJ 《Plant physiology》1979,64(6):919-923
Both laboratory- and field-grown Mesembryanthemum crystallinum plants exhibited large scale diurnal ion fluctuations. In mesophyll tissue, potassium and sodium levels varied in conjunction with acid levels while chloride levels varied in opposition. Thus, dark CO2 fixation in this Crassulacean acid metabolism species seems analogous to the common plant process of malate synthesis to balance cation surplus. Sodium levels in the epidermis appeared to fluctuate in opposition to those in the mesophyll. It is proposed that inorganic cations cycle between mesophyll and epidermal tissue to balance malate accumulation and to produce stomatal opening in the dark.  相似文献   

14.
15.
16.
Unlike many plants reported in the literature, lupins do notexcrete OH- in amounts equivalent to the net excess of inorganicanion uptake over inorganic cation uptake. To investigate themechanisms involved in the maintenance of charge balance, nutrientuptake and organic anion accumulation of lupins and peas suppliedwith a range of NO-3 concentrations, were compared. Lupins absorbed less NO-3 than peas on a dry weight basis, whichlargely accounted for the smaller excess of anion uptake overcation uptake in lupins than in peas at the same NO-3 supply.When anion uptake exceeded cation uptake, peas excreted an equivalentcharge of OH-, whereas lupins excreted much smaller amountsof OH- than the excess of anion over cation uptake. It was calculatedthat lupins excreted significant amounts of organic anions whenanion uptake exceeded cation uptake, whereas organic anion excretionfrom peas was negligible, regardless of their NO-3 supply andcation-anion balance. In this study, organic anion excretion was measured from lupinroots grown in near-sterile conditions while supplied with NO-3at 0, 500 and 2000 µM. Although complete sterility wasnot achieved, there was close agreement between the organicanion excreted and the excess anion over cation uptake.Copyright1994, 1999 Academic Press Lupinus angustifolius L., Pisum sativum L., organic acid, nutrient uptake  相似文献   

17.
Succinate Metabolism in Potato-tuber Tissue   总被引:1,自引:0,他引:1  
Discs of washed potato tuber metabolized [2, 3 –14C2-labelledsuccinate for 3–5 hours, after which time the distributionof activity was studied. The results show the central positionof the Krebs cycle in the metabolism of this tissue. Four reactionchains are apparent: 1. Oxidation of a small amount of succinate to carbon dioxide. 2. Production of labelled glutamic acid and glutamine. 3. The amination probably of pyruvate yielding a-alanine. 4. The reversal of glycolysis leading to the synthesis of labelledsucrose. The significance of the last in relation to oxidativeanabolism is discussed. The effect of dinitrophenol on thesemetabolic processes was also examined.  相似文献   

18.
Peperomia camptotricha, a tropical epiphyte from Mexico, shows variable forms of Crassulacean acid metabolism (CAM). Young leaves exhibit CAM-cycling, while mature leaves show an intermediate type of metabolism, between CAM and CAM-cycling, having approximately the same amount of nighttime gas exchange as daytime. Metabolism of young leaves appears independent of daylength, but mature leaves have a tendency toward more CAM-like metabolism under short days (8 hours). Large differences in the physical appearance of plants were found between those grown under short daylengths and those grown under long daylengths (14 hours). Some anatomical differences were also detected in the leaves. Water stress caused a switch to CAM in young and mature leaves, and as water stress increased, they shifted to CAM-idling.  相似文献   

19.
20.
We have been interested in the possibility that arachidonic acid or one of its 12-lipoxygenase metabolites may function as a retrograde messenger in long-term potentiation (LTP) in the dentate gyrus of the hippocampus. One criterion required of a retrograde messenger is that it stimulates presynaptic changes. Here, two possible presynaptic actions of arachidonic acid and its 12-lipoxygenase metabolites, 12-hydroxyeicosatetraenoic acid (HETE) and 12-hydroperoxyeicosatetraenoic acid (HPETE), are examined. We report that arachidonic acid, HETE, and HPETE significantly increase both K(+)-stimulated release of [3H]glutamate and [3H]inositol labelling of inositol phosphates in synaptosomes, whereas other biologically important fatty acids (oleic, palmitic, and stearic) failed to induce a similar response. The findings of these experiments are consistent with the hypothesis that arachidonic acid, HETE, or HPETE may play the role of a retrograde messenger in LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号