首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The endosymbiotic origin of chloroplasts from unicellular cyanobacteria is presently beyond doubt. Oxygenic photosynthesis is based on coordinated action of the two photosystems (PS), PS I and PS II, cooperating with several variants of the pigment antenna. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) act as antennae, while in terrestrial plants, as well as in most macro- and microalgae, antennae are formed by chlorophyll a/b- and chlorophyll a/c-containing proteins. Advantages and disadvantages of the PBS antenna compared to other light-harvesting complexes form the basis for adaptive variations of the antenna in the course of development of eukaryotic photosynthesis. During the evolution of the “green” and “chromophyte” lineages of the chloroplasts, PBS, in spite of their optimal features of light absorption, were replaced by chlorophyll a/b- and chlorophyll a/c-containing light-harvesting complexes. Development of the cell wall associated with the limitation of motility and tissue formation in photosynthetic eukaryotes were the factors responsible for the antenna shift. The subsequent redistribution of cell resources in favor of cellulose biosynthesis required for increased CO2 consumption, higher PS II levels, and greater number and density of the thylakoids in the chloroplasts, was incompatible with the energy-consuming and overly large PBS antenna.  相似文献   

2.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

3.
Electron microscopy (EM) in combination with image analysis is a powerful technique to study protein structure at low- and high resolution. Since electron micrographs of biological objects are very noisy, substantial improvement of image quality can be obtained by averaging individual projections. Crystallographic and noncrystallographic averaging methods are available and have been applied to study projections of the large protein complexes embedded in photosynthetic membranes from cyanobacteria and higher plants. Results of EM on monomeric and trimeric Photosystem I complexes, on monomeric and dimeric Photosystem II complexes, and on the monomeric cytochromeb6/f complex are discussed.  相似文献   

4.
In several systems, from plant's canopy to algal bioreactors, the decrease of the antenna size has been proposed as a strategy to increase the photosynthetic efficiency. However, still little is known about possible secondary effects of such modifications. This is particularly relevant because the modulation of the antenna size is one of the most important light acclimation responses in photosynthetic organisms. In our study, we used an Arabidopsis thaliana mutant (dLhcb2), which has a 60% decrease of Lhcb1 and Lhcb2, the two main components of the major Photosystem II antenna complex. We show that the mutant maintains the photosynthetic and photoprotective capacity of the Wild Type (WT) and adapts to different light conditions by remodelling its photosynthetic apparatus, but the regulatory mechanism differs from that of the WT. Surprisingly, it does not compensate for the decreased light-harvesting capacity by increasing other pigment-protein complexes. Instead, it lowers the ratio of the cytochrome b6f and ATP synthase to the photosystems, regulating linear electron flow and maintaining the photosynthetic control at the level of these complexes as in the WT. We show that targeting the reduction of two specific antenna proteins, Lhcb1 and Lhcb2, represents a viable solution to obtain plants with a truncated antenna size, which still maintain the capacity to acclimate to different light conditions.  相似文献   

5.
Two hypotheses account for the evolution of the inner antenna light-harvesting proteins of oxygenic photosynthesis in cyanobacteria, algae, and plants: one in which the CP43 protein of photosytem II gave rise to the extrinsic CP43-like antennas of cyanobacteria (i.e. IsiA and Pcb proteins), as a late development, and the other in which CP43 and CP43-like proteins derive from an ancestral protein. In order to determine which of these hypotheses is most likely, we analyzed the family of antenna proteins by a variety of phylogenetic techniques, using alignments of the six common membrane-spanning helices, constructed using information on the antenna proteins’ three-dimensional structure, and surveyed for evidence of factors that might confound inference of a correct phylogeny. The first hypothesis was strongly supported. As a consequence, we conclude that the ancestral photosynthetic apparatus, with 11 membrane-spanning helices, split at an early stage during evolution to form, on the one hand, the reaction center of photosystem II and, on the other hand, the ancestor of inner antenna proteins, CP43 (PsbC) and CP47 (PsbB). Only much later in evolution did the CP43 lineage give rise to the CP43’ proteins (IsiA and Pcb) of cyanobacteria. [Reviewing Editor: Dr. Patrick Keeling]  相似文献   

6.
The molecular architectures of photosynthetic complexes are rapidly becoming available through the power of X-ray crystallography. These complexes are comprised of antenna complexes, which absorb and transfer energy into photochemical reaction centers. Most reaction centers, found in both oxygenic and non-oxygenic species, are connected to transmembrane chlorophyll containing antennas, and the crystal structures of these antennas contain information on the structure of the entire complex as well as clear indications on their modes of functional association. In cyanobacteria and red alga, most of the Photosystem II associated light harvesting is performed by an enormous (3–7 MDa) membrane attached complex called the phycobilisome (PBS). While the crystal structures of many isolated components of different PBSs have been determined, the structure of the entire complex as well as its manner of association with Photosystem II can only be suggested. In this review, the structural information obtained on the isolated components will be described. The structural information obtained from the components provides the basis for the modeled reconstruction of this giant complex.  相似文献   

7.
Accessory chlorophyll-binding proteins (CBP) in cyanobacteria have six transmembrane helices and about 11 conserved His residues that might participate in chlorophyll binding. In various species of cyanobacteria, the CBP proteins bind different types of chlorophylls, including chlorophylls a, b, d and divinyl-chlorophyll a, b. The CBP proteins do not belong to the light-harvesting complexes (LHC) superfamily of plant and algae. The proposed new name of CBP for this class of proteins, which is a unique accessory light-harvesting superfamily in cyanobacteria, clarifies the confusion of names of prochlorophytes chlorophyll binding protein (Pcb), PSII-like light-harvesting proteins and iron-stress-induced protein A (IsiA). The CBP complexes are a member of a larger family that includes the chlorophyll a-binding proteins CP43 and CP47 that function as core antennas of photosystem II.  相似文献   

8.
LHCII is the most abundant membrane protein on earth. It participates in the first steps of photosynthesis by harvesting sunlight and transferring excitation energy to the core complex. Here we have analyzed the LHCII complex of the green alga Chlamydomonas reinhardtii and its association with the core of Photosystem II (PSII) to form multiprotein complexes. Several PSII supercomplexes with different antenna sizes have been purified, the largest of which contains three LHCII trimers (named S, M and N) per monomeric core. A projection map at a 13 Å resolution was obtained allowing the reconstruction of the 3D structure of the supercomplex. The position and orientation of the S trimer are the same as in plants; trimer M is rotated by 45° and the additional trimer (named here as LHCII-N), which is taking the position occupied in plants by CP24, is directly associated with the core. The analysis of supercomplexes with different antenna sizes suggests that LhcbM1, LhcbM2/7 and LhcbM3 are the major components of the trimers in the PSII supercomplex, while LhcbM5 is part of the “extra” LHCII pool not directly associated with the supercomplex. It is also shown that Chlamydomonas LHCII has a slightly lower Chlorophyll a/b ratio than the complex from plants and a blue shifted absorption spectrum. Finally the data indicate that there are at least six LHCII trimers per dimeric core in the thylakoid membranes, meaning that the antenna size of PSII of C. reinhardtii is larger than that of plants.  相似文献   

9.
Photosynthetic state transitions are a well-known phenomenon of short-term adaptation of the photosynthetic membrane to changes in spectral quality of light in low light environments. The principles of the monitoring and quantification of the process in higher plants are revised here. The use of the low-temperature excitation fluorescence spectroscopy for analysis of the photosystem I antenna cross-section dynamics is described. This cross section was found to increase by 20–25% exclusively due to the migration and attachment of LHCIIb complex in State 2. Analysis of the fine structure of the additional PSI cross-section spectrum revealed the 510 nm band, characteristic of Lutein 2 of LHCIIb and present only when the complex is in a trimeric state. The excitation fluorescence spectrum of the phospho-LHCII resembles the spectrum of aggregated and hence quenched LHCII. This novel observation could explain the fact that at no point in the course of the state transition high fluorescence and long lifetime components of detached trimeric LHCII have ever been observed. In the plants lacking Lhcb1 and 2 proteins and unable to perform state transitions, compensatory sustained adjustments of the photosystem I and II antennae have been revealed. Whilst the major part of the photosystem II antenna is built largely of CP26 trimers, possessing less chlorophyll b and more of the red-shifted chlorophyll a, photosystem I in these plants contains more than 20% of extra LHCI antenna enriched in chlorophyll b. Hence, both photosystems in the plants lacking state transitions have less spectrally distinct antennae, which enable to avoid energy imbalance due to the changes in the light quality. These alterations reveal remarkable plasticity of the higher plant photosynthetic antenna design providing the basis for a flexible adaptation to the light environment.  相似文献   

10.
Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.This article contains online-only supplementary material.Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

11.
Thylakoid membranes and Photosystem I (PS I) complexes were isolated from a glaucocystophyte, Cyanophora paradoxa, which is thought to have the most primitive ‘plastids’, and the proteins related to PS I were examined. The intrinsic light-harvesting chlorophyll protein complexes of PS I (LHC I) were not detected by an immunological method. The PS I complexes consisted of at least eight low-molecular-mass proteins in addition to PS I reaction center proteins. The N-terminal sequence of the PsaD protein has higher homology to that of Chlamydomonas reinhardtii and land plants, than to that of other algae or cyanobacteria. On the other hand, the PsaL sequence has the highest homology to those of cyanobacteria. Taking into account the other sequences of PS I components whose genes are encoded in the cyanelle genome, and the fact that LHC I is not detected, it is concluded that PS I of C. paradoxa has chimeric characteristics of both ‘green’ lineages and cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that β-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids.Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and β-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.  相似文献   

13.
We investigated the diurnal fluctuation in the composition of the light harvesting chlorophyll a/b antenna of photosystem II in young wheat (Triticum aestivum) leaves grown under periodic day/night irradiation. By means of gel electrophoresis of the polypeptides of thylakoid membranes, we determined the amount of 25 kDa and 27 kDa polypeptides, which are the main components of the peripheral and inner antenna subpopulations, respectively. Our data show a preferential fluctuation in the amount of the 25 kDa protein relative to the 27 kDa polypeptide, in parallel to the fluctuation in the amount of chlorophyll a/b antenna of photosystem II, which suggests that the peripheral antenna plays a role in the diurnal adjustment of the antenna size.  相似文献   

14.
Within the vast oceanic gyres, a significant fraction of the total chlorophyll belongs to the light-harvesting antenna systems of a single genus, Prochlorococcus. This organism, discovered only about 10 years ago, is an extremely small, Chl b-containing cyanobacterium that sometimes constitutes up to 50% of the photosynthetic biomass in the oceans. Various Prochlorococcus strains are known to have significantly different conditions for optimal growth and survival. Strains which dominate the surface waters, for example, have an irradiance optimum for photosynthesis of 200 μmol photons m−2 s−1, whereas those that dominate the deeper waters photosynthesize optimally at 30–50 μmol photons m−2 s−1. These high and low light adapted ‘ecotypes’ are very closely related — less than 3% divergent in their 16S rRNA sequences — inviting speculation as to what features of their photosynthetic mechanisms might account for the differences in photosynthetic performance. Here, we compare information obtained from the complete genome sequences of two Prochlorococcus strains, with special emphasis on genes for the photosynthetic apparatus. These two strains, Prochlorococcus MED4 and MIT 9313, are representatives of high- and low-light adapted ecotypes, characterized by their low or high Chl b/a ratio, respectively. Both genomes appear to be significantly smaller (1700 and 2400 kbp) than those of other cyanobacteria, and the low-light-adapted strain has significantly more genes than its high light counterpart. In keeping with their comparative light-dependent physiologies, MED4 has many more genes encoding putative high-light-inducible proteins (HLIP) and photolyases to repair UV-induced DNA damage, whereas MIT 9313 possesses more genes associated with the photosynthetic apparatus. These include two pcb genes encoding Chl-binding proteins and a second copy of the gene psbA, encoding the Photosystem II reaction center protein D1. In addition, MIT 9313 contains a gene cluster to produce chromophorylated phycoerythrin. The latter represents an intermediate form between the phycobiliproteins of non-Chl b containing cyanobacteria and an extremely modified β phycoerythrin as the sole derivative of phycobiliproteins still present in MED4. Intriguing features found in both Prochlorococcus strains include a gene cluster for Rubisco and carboxysomal proteins that is likely of non-cyanobacterial origin and two genes for a putative and β lycopene cyclase, respectively, explaining how Prochlorococcus may synthesize the α branch of carotenoids that are common in green organisms but not in other cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Oxygen-evolving photosystem II complexes from spinach, whichlack light-harvesting chlorophyll a/b proteins, were treatedwith a bifunctional crosslinking reagent, hexamethylene-diisocyanate.Identification of crosslinked proteins with antisera raisedagainst various constituent proteins of the oxygen-evolvingPS II complex showed that the extrinsic 33 kDa protein is locatedless than 11 Å from the 9.4 kDa subunit of cytochromeb 559 and the 4.8 kDa product of psb I gene. (Received October 14, 1991; Accepted February 6, 1992)  相似文献   

16.
The nuclear-encoded Chl a/b and Chl a/c antenna proteins of photosynthetic eukaryotes are part of an extended family of proteins that also includes the early light-induced proteins (ELIPs) and the 22 kDa intrinsic protein of PS II (encoded by psbS gene). All members of this family have three transmembrane helices except for the psbS protein, which has four. The amino acid sequences of these proteins are compared and related to the three-dimensional structure of pea LHC II Type I (Kühlbrandt and Wang, Nature 350: 130–134, 1991). The similarity of psbS to the three-helix members of the family suggests that the latter arose from a four-helix ancestor that lost its C-terminal helix by deletion. Strong internal similarity between the two halves of the psbS protein suggests that it in turn arose as the result of the duplication of a gene encoding a two-helix protein. Since psbS is reported to be present in at least one cyanobacterium, the ancestral four-helix protein may have been present prior to the endosymbiotic event or events that gave rise to the photosynthetic eukaryotes. The Chl a/b and Chl a/c antenna proteins, and the immunologically-related proteins in the rhodophytes may have had a common ancestor which was present in the early photosynthetic eukaryotes, and predated their division into rhodophyte, chromophyte and chlorophyte lineages. The LHC I-LHC II divergence probably occurred before the separation of higher plants from chlorophyte algae and euglenophytes, and the different Types of LHC I and LHC II proteins arose prior to the separation of angiosperms and gymnosperms.Abbreviations CAB Chl a/b-binding - ELIP early light-induced protein - FCP fucoxanthin-Chl a/c protein - PCR polymerase chain reaction - TMH trans-membrane helix  相似文献   

17.
A three-dimensional image of the spinach photosystem II core complex composed of CP47, D1, D2, cytochromeb-559, andpsbI gene product was reconstructed at 20-Å resolution from the two-dimensional crystals negatively stained with phosphotungstate. Confirming the previous proposal, the crystal had ap22121symmetry. One PSII core complex was measured to be 80 × 80 Å in the membrane plane and 88 Å normal to it. The mass distribution was asymmetric about the lipid bilayer, consistent with predictions from the amino acid sequences. The lumenal mass consisted of three domains forming a characteristic triangular platform with another domain on top of it. Three stromal domains were smaller and linearly arranged. Due to strong stain exclusion in the hydrophobic core part of the lipid bilayer, the transmembrane region appeared to be imaged with a reversed contrast. Inverting the contrast resulted in a reasonable density distribution for that part. Thus, though the information on the transmembrane region is limited, the domain structure of the PSII core complex was revealed and allowed us to propose a model for the arrangement of subunits in the PSII core complex.  相似文献   

18.
In recent years Photosystem II, and in particular the oxygen evolving component of the enzyme, have been the subject of intense biochemical and biophysical analysis. To date no high resolution structural model of the complex has been produced. As a consequence unambiguous interpretation of much experimental data has proven difficult, leading to a lack of consensus over many basic questions regarding the mechanisms involved, the oligomerization state of the enzyme in vivo and even the exact biochemical composition.This review is a summary of the progress towards the production of a structural model of PS II-derived from either X-ray crystallography or electron microscopy based techniques-and the current opinions, which have arisen from these structural analyses, on the structural topology and assemblage of the various subunits that constitute the complex.Abbreviations C12-M dodecyl maltoside - CP chlorophyll protein - cyt b-559 cytochrome b-559 - DMPC dimyristoyl phosphatidyl choline - EC electron crystallography - EM electron microscopy - LHC II light harvesting complex II - OEC oxygen evolving complex - OG octyl--glucopyranoside - PS I Photosystem I - PS II Photosystem II - Tris N-tris (hydroxymethyl) amino ethane  相似文献   

19.
A photosystem II core from spinach containing the chlorophyll-binding proteins 47 kDa, 43 kDa, the reaction center proteins D1, D2 and cytochromeb 559 and three low molecular weight polypeptides (MW < 10 kDa) was isolated, its three-dimensional crystals were prepared, and both core and crystals were studied by spectroscopic techniques and electron microscopy. The absorption spectra of the crystallized form of the core indicate a specific orientation of the various pigments within the crystal.  相似文献   

20.
Three Chl–protein complexes were isolated from thylakoid membranes of Bryopsis maxima and Ulva pertusa, marine green algae that inhabit the intertidal zone of the Pacific Ocean off the eastern coast of Japan by dodecyl-β-d-maltoside polyacrylamide gel electrophoresis. The slowest-moving fractions showed low Chl a/b and Chl/P-700 ratios, indicating that this fraction corresponds to complexes in PS I, which is large in both algae. The intermediate and fastest-moving fractions showed the traits of PS II complexes, with some associated Chl a/b–protein complexes and LHC II, respectively. The spectral properties of the separated Chl–proteins were also determined. The absorption spectra showed a shallow shoulder at 540 nm derived from siphonaxanthin in Bryopsis maxima, but not in Ulva pertusa. The 77 K emission spectra showed a single peak in Bryopsis maxima and two peaks in Ulva pertusa. Besides the excitation spectra indicated that the excitation energy transfer to the PS I complexes differed quite a lot higher plants. This suggested that the mechanisms of energy transfer in both of these algae differ from those of higher plants. Considering the light environment of this coastal area, the large size of the antennae of PS I complexes implies that the antennae are arranged so as to balance light absorption between the two photosystems. In addition, we discuss the relationships among the photosystem stoichiometry, the energy transfer, and the distribution between the two photosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号