首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants,selenium and human health   总被引:23,自引:0,他引:23  
Selenium is an essential nutrient for animals, microorganisms and some other eukaryotes. Although selenium has not been demonstrated to be essential in vascular plants, the ability of some plants to accumulate and transform selenium into bioactive compounds has important implications for human nutrition and health, and for the environment. Selenium-accumulating plants provide unique tools to help us understand selenium metabolism. They are also a source of genetic material that can be used to alter selenium metabolism and tolerance to help develop food crops that have enhanced levels of anticarcinogenic selenium compounds, as well as plants that are ideally suited for the phytoremediation of selenium-contaminated soils.  相似文献   

2.
Advances in our understanding of vitamin E   总被引:2,自引:0,他引:2  
Vitamin E is an essential nutrient for animals and man since it is not synthesized in the body. The level of vitamin E in the lipoproteins of plasma and in the phospholipids of vital mitochondria, microsomes, and plasma membranes in humans depends (as in experimental animals) on the amount of biologically active vitamin E being consumed, the levels of dietary prooxidants and antioxidants, and the adequacy of dietary selenium. Studies with chicks have demonstrated an important mode of action of both vitamin E and selenium in metabolism, and provide a solution to the long-term enigma of the true role of vitamin E in the diet of all animals, including man. The biochemical actions of vitamin E and selenium are concerned with prevention of peroxidative damage to cells and subcellular elements, thereby aiding the body in maintaining its normal defense mechanisms against disease and environmental insult.  相似文献   

3.
Recognition of individuals at first sight is important for social species and can be achieved by attending to facial or body information. Previous research suggests that infants possess a perceptual template for evolutionarily relevant stimuli, which may include humans, dangerous animals (e.g. snakes), but not non-dangerous animals. To be effective, such a mechanism should result in a systematic preference for attending to humans over non-dangerous animals. Using a preferential looking paradigm, the present studies investigated the nature of infants' early representation of humans. We show that 3.5- and six-month-old infants attend more to human beings than non-human primates (a gorilla or monkey) which are examplars of non-dangerous animals. This occurred when infants were presented with head or body information in isolation, as well as when both are presented simultaneously. This early preference for humans by 3.5 months of age suggests that there is a basic representation for humans, which includes both head and/or body information. However, neonates demonstrated a preference only for human faces over non-human primate faces, not for humans over non-human primates when the stimuli were presented with both head and body simultaneously. The results show that although neonates display a preference for human faces over others, preference for the human body only develops later, in the first few months of life. This suggests that infants have acquired some knowledge about the human body at 3.5 months of age that may have developed from their privileged experience with other humans in the first few months of life, rather than an innate ability to detect humans in their entirety.  相似文献   

4.
Epilepsy is one of the oldest neurological conditions known to humankind. It is known that oxidative stress and generation of reactive oxygen species are a cause and consequence of epileptic seizures. Although recent years have seen tremendous progress in the molecular biology and metabolism of selenium, we still know little about the cell type-specific and temporal pattern of selenium and its derivatives in the brain of epileptic humans and experimental animals. It has been suggested that some antiepileptic drug therapies such as valproic acid, deplete the total body selenium level and selenium-dependent glutathione peroxidase (GSH-Px) activity although therapy with a new epileptic drug, topiramate, activated GSH-Px activity in epileptic animals and humans. An observation of lower blood or tissue selenium level and GSH-Px activity in epileptic patients and animals compared to controls in recent publications may support the proposed crucial role of selenium level and GSH-Px activity in the pathogenesis of epilepsy. Selenium is incorporated into an interesting class of molecules known as selenoproteins that contain the modified amino acid, selenocysteine. There are signs of selenium and selenoprotein deficiency in the pathogenesis of epilepsy. In conclusion, there is convincing evidence for the proposed crucial role of selenium and deficiency of GSH-Px enzyme activity in epilepsy pathogenesis. Blood GSH-Px activities could be a reliable indicator of selenium deficiency in patients with epilepsy.  相似文献   

5.
Selenium, a dietary trace mineral, essential for humans and animals, exerts its effects mainly through its incorporation into selenoproteins. Adequate selenium intake is needed to maximize the activity of selenoproteins, among which glutathione peroxidases have been shown to play a major role in cellular defense against oxidative stress initiated by excess reactive oxygen species. In humans, a low selenium status has been linked to increased risk of various diseases, including heart disease. The main objective of this review is to present current knowledge on the role of selenium in cardiac health. Experimental studies have shown that selenium may exert protective effects on cardiac tissue in animal models involving oxidative stress. Because of the narrow safety margin of this mineral, most interventional studies in humans have reported inconsistent findings. Major determinants of selenium status in humans are not well understood and several nondietary factors might be associated with reduced selenium status. In this review, we discuss recent studies regarding the role of selenoproteins in the cardiovascular system, the effect of dietary intake on selenium status, the impact of selenium status on cardiac health, and the cellular mechanisms that can be involved in the physiological and toxic effects of selenium.  相似文献   

6.
Relationship between selenium, immunity and resistance against infection   总被引:2,自引:0,他引:2  
1. Food selenium content, selenium supply and selenium needs are presented, along with methods of evaluation of selenium status. Glutathione peroxidase, a selenium-containing enzyme, is ubiquitous in the organism. 2. Some experimental studies on animal models reported a positive relationship between selenium status and resistance against infections. 3. Only one study in humans concerned the mechanisms of immune functions in selenium deficiency. Several experimental works suggest that severe selenium deficiency compromises T-cell dependent immune functions such as the blastogenic response to mitogens, but selenium deficiency was concomitant with vitamin E deficiency in most of them. Delayed hypersensitivity response is controversial in selenium-supplemented rats and guinea-pigs. 4. Selenium deficiency in animals decreases the antibody response, especially if associated with vitamin E deficiency. Low dietary selenium supplementation of healthy animals has a positive effect upon humoral responses. 5. Despite some controversies, most experimental studies on selenium-deficient animals report normal phagocytosis and an altered bactericidal capacity of neutrophils. The decrease in glutathione peroxidase activity of polymorphonuclear cells following selenium deficiency could explain some of these alterations. 6. Splenic Natural Killer cells activity is enhanced in selenium-supplemented, healthy animals.  相似文献   

7.
Selenium is an essential dietary component for animals including humans, and there is increasing evidence for the efficacy of certain forms of selenium as cancer-chemopreventive compounds. In addition, selenium appears to have a protective effect at various stages of carcinogenesis including both the early and later stages of cancer progression. Mechanisms for selenium-anticancer action are not fully understood; however, several have been proposed: antioxidant protection, enhanced carcinogen detoxification, enhanced immune surveillance, modulation of cell proliferation (cell cycle and apoptosis), inhibition of tumor cell invasion and inhibition of angiogenesis. Research has shown that the effectiveness of selenium compounds as chemopreventive agents in vivo correlates with their abilities to affect the regulation of the cell cycle, to stimulate apoptosis and to inhibit tumor cell migration and invasion in vitro. This article reviews the status of knowledge concerning selenium metabolism and its anticancer effects with particular reference to the modulation of cell proliferation and the inhibition of tumor cell invasion.  相似文献   

8.
The growth of DU-145 human prostate carcinoma cells is reduced to 50% of control by 1 X 10(-6) M to 2 X 10(-6) M selenium and to 2% of control at 10(-4)M selenium. These cells show greater sensitivity to inhibition of growth or DNA synthesis by selenium than human W1-38 and HeLa cells and mouse mammary tumor cells. It has been shown that selenium inhibits carcinogenesis and reduces the incidence of chemical carcinogen and virus-induced tumors of a variety of organs in animals. Selenium may also inhibit the growth of certain tumor cells of non-human origin. To our knowledge, this is the first study on the effects of selenium on the growth of human tumor cells. From extrapolation, it is deduced that selenium serum levels in humans living in high selenium areas may be as high as 10(-6) M and could be effective in inhibiting the growth of tumor cells in vivo. These findings have implications in the prevention and intervention of prostate cancer in man.  相似文献   

9.
10.
The role of selenium (Se) in human health and diseases has been discussed in detail in several recent reviews, with the main conclusion being that selenium deficiency is recognised as a global problem which urgently needs resolution. Since selenium content in plant-based food depends on its availability from soil, the level of this element in food and feeds varies among regions. In general, eggs and meat are considered to be good sources of selenium in human diet. When considering ways to improve human selenium intake, there are several potential options. These include direct supplementation, soil fertilisation and supplementation of food staples such as flour, and production of functional foods. Analysing recent publications related to functional food production, it is evident that selenium-enriched eggs can be used as an important delivery system of this trace mineral for humans. In particular, developments and commercialisation of organic forms of selenium have initiated a new era in the availability of selenium-enriched products. It has been shown that egg selenium content can easily be manipulated to give increased levels, especially when organic selenium is included in hen’s diet at levels that provide 0.3–0.5 mg/kg selenium in the feed. As a result, technology for the production of eggs delivering ≈50% (30–35 μg) of the human selenium RDA have been developed and successfully tested. Currently companies all over the world market selenium-enriched eggs including the UK, Ireland, Mexico, Columbia, Malaysia, Thailand, Australia, Turkey, Russia and the Ukraine. Prices for enriched eggs vary from country to country, typically being similar to free-range eggs. Selenium-enriched chicken, pork and beef can also be produced when using organic selenium in the diet of poultry and farm animals. The scientific, technological and other advantages and limitations of producing designer/modified eggs as functional foods are discussed in this review.  相似文献   

11.
Two new models have been described for Enterocytozoon bieneusi, non-human primates and immuno-suppressed gnotobiotic pigs, but there still is no successful cell culture system. The intestinal xenograft system holds promise as an animal model for Encephalitozoon intestinalis. Encephalitozoon hellem is easily propagated in mice, and also may be an important cause of spontaneous disease of psittacine birds. Encephalitozoon cuniculi occurs spontaneously in a wide variety of animals and can be induced experimentally in athymic mice. This is a useful experimental system and animal model, but the infection is relatively rare in man. Mammalian microsporidioses first were recognized as spontaneous diseases of animals that later confounded studies intended to elucidate the nature of diseases of humans. Much was learned about both experimental and spontaneous animal microsporidial infections that subsequently has been applied to the human diseases. In addition, new diseases have appeared, in both animals and humans, for which models are being developed. Since there are now animal models for almost all the known human microsporidioses, information on pathogenesis, host defenses, and effective treatments may become available soon. The microsporidioses provide a good example of the value of comparative pathology. Dr. Payne: Joe Payne. How much accidental infection has occurred with adjacent laboratory animals? Dr. Shadduck: A hard question. The organisms are thought to spread horizontally, and there is some pretty good evidence for that in rabbits. One assumes that this also is the explanation for the occurrence in infected kennels. Horizontal transmission probably occurs via contaminated urine, at least in the case of rabbits and dogs. Experimentally, horizontal transmission has been difficult to demonstrate in mice. Relative to the danger in people, I don't know how to answer that. I have always treated this as one of those things where you should be careful, but you shouldn't get paranoid. So, we have handled infected cell cultures and animals as if they were potentially infectious for man, but not as if they were something as hot as the human AIDS virus, for example. With the increasing number of reports in humans, I think it is clear that one would never want anybody who was at risk of being immunocompromised to work with these organisms. Dr. Fenkel: Are there other questions? Dr. Mysore: How do the parasites spread within the infected hosts? Dr. Shadduck: The usual answer is hematogenously via infected macrophages, but data that actually support that statement are rare. One does see infected macrophages in tissues, so it is not unreasonable to think that some of them escape and lodge in other tissues. But that has never actually been formally demonstrated. Dr. Nakeeb: Is E. bieneusi a human pathogen? Dr. Shadduck: The answer depends on which paper you read and what approach the authors took. There are papers in which the authors argue that the organism is not a cause of clinical disease in AIDS patients, but the general belief today is that the parasite does cause diarrhea and enteritis. I think the evidence for pathogenicity is quite strong for the various species of the Encephalitozoon, based on the severity and distribution of the lesions.  相似文献   

12.
In animals, decreases in selenium-containing glutathione peroxidase activity and the resultant impairment of peroxide metabolism can account for many, but not all of the biochemical and clinical changes caused by selenium deficiency. Recently, however, type I iodothyronine 5'-deiodinase has also been shown to be a selenium-containing enzyme. This explains the impairment of thyroid hormone metabolism caused by selenium deficiency in animals with a normal vitamin E status. Since iodothyronine 5'-deiodinases are essential for the production of the active thyroid hormone 3,5,3'-triiodothyronine, some of the consequences of selenium deficiency may result from thyroid changes rather than inability to metabolise peroxides. In particular, the impaired thyroid hormone metabolism may be responsible for decreased growth and resistance to cold stress in selenium-deficient animals. A further consequence of the role of selenium in thyroid hormone metabolism is the exacerbation of some of the thyroid changes in iodine deficiency by a concurrent selenium deficiency. Selenium status may therefore have a major influence on the outcome of iodine deficiency in both human and animal populations.  相似文献   

13.
Transitive inference has long been considered one of the hallmarks of human deductive reasoning. Recent reports of transitive-like behaviors in non-human animals have prompted a flourishing empirical and theoretical search for the mechanism(s) that may mediate this ability in non-humans. In this paper, I begin by describing the transitive inference tasks customarily used with non-human animals and then review the empirical findings. Transitive inference has been demonstrated in a wide variety of species, and the signature effects that usually accompany transitive inference in humans (the serial position effect and the symbolic distance effect) have also been found in non-humans. I then critically analyze the most prominent models of this ability in non-human animals. Some models are cognitive, proposing for instance that animals use the rules of formal logic or form mental representations of the premises to solve the task, others are based on associative mechanisms such as value transfer and reinforcement and non-reinforcement. Overall, I argue that the reinforcement-based models are in a much better empirical and theoretical position. Hence, transitive inference in non-human animals should be considered a property of reinforcement history rather than of inferential processes. I finalize by shedding some light on some promising lines of research.  相似文献   

14.
The genotoxicity of selenium   总被引:10,自引:0,他引:10  
Selenium at nutritional levels has been shown to have numerous anticarcinogenic or preventative effects against carcinogen-induced breast, colon, liver and skin cancer in animals. Many of these anticarcinogenic effects have been summarized. In addition, numerous mutagenic and antimutagenic effects of selenium compounds have been reported. Some of the selenium compounds frequently tested for mutagenicity are listed in Table 1. Because of the numerous reported anticarcinogenic and preventative effects of selenium, many individuals are supplementing their diets with amounts of selenium that are greater than the recommended daily requirement. Selenium is also used widely in industrial products such as selenium rectifiers, photoelectric batteries, alloys and paints. Because selenium at higher levels is known to be toxic, there should be a greater understanding about its genotoxic as well as its beneficial effect. The object of this review is to summarize experimental evidence both for the antimutagenic and the mutagenic effect of selenium.  相似文献   

15.
Cyclosporine is an important therapeutic agent for transplant recipients and for a growing number of autoimmune diseases. Experimental animal and human data has indicated that cyclosporine is unlikely to be genotoxic. In contrast, azathioprine, an agent often given with cyclosporine, is considered to be genotoxic making the assessment of the independent effects of cyclosporine difficult. Cyclosporine does appear to be related to the development of tumors, primarily lymphomas, in animals and humans, but the basis of its potential carcinogenicity is not completely understood. In terms of reproductive and developmental toxicity, cyclosporine produces some adverse effects in both experimental animals and humans. In animals, the effects are seen at high doses sufficient to cause maternal toxicity. In humans, outcomes such as growth retardation have been noted, but the confounding effects of renal toxicity and resultant pregnancy complications cloud the interpretation. An increase in congenital anomalies and genetic disease have not been found reported in human studies that are limited in sample size.  相似文献   

16.
Selenium (Se) is an essential micronutrient for humans, acting as a component of the unusual amino acids, selenocysteine (Se-Cys) and selenomethionine (Se-Met). Where Se levels are low, the cell cannot synthesise selenoproteins, although some selenoproteins and some tissues are prioritised over others. Characterised functions of known selenoproteins, include selenium transport (selenoprotein P), antioxidant/redox properties (glutathione peroxidases (GPxs), thioredoxin reductases and selenoprotein P) and anti-inflammatory properties (selenoprotein S and GPx4). Various forms of Se are consumed as part of a normal diet, or as a dietary supplement. Supplementation of tissue culture media, animal or human diets with moderate levels of certain Se compounds may protect against the formation of DNA adducts, DNA or chromosome breakage, and chromosome gain or loss. Protective effects have also been shown on mitochondrial DNA, and on telomere length and function. Some of the effects of Se compounds on gene expression may relate to modulation of DNA methylation or inhibition of histone deacetylation. Despite a large number of positive effects of selenium and selenoproteins in various model systems, there have now been some human clinical trials that have shown adverse effects of Se supplementation, according to various endpoints. Too much Se is as harmful as too little, with animal models showing a "U"-shaped efficacy curve. Current recommended daily allowances differ among countries, but are generally based on the amount of Se necessary to saturate GPx enzymes. However, increasing evidence suggests that other enzymes may be more important than GPx for Se action, that optimal levels may depend upon the form of Se being ingested, and vary according to genotype. New paradigms, possibly involving nutrigenomic tools, will be necessary to optimise the forms and levels of Se desirable for maximum protection of genomic stability in all humans.  相似文献   

17.
Mechanistic aspects of the interaction between selenium and arsenic   总被引:6,自引:0,他引:6  
Selenium is an essential trace element for humans and other animals, and there is mounting evidence for the efficacy of certain forms of selenium as cancer-chemopreventive compounds. However, over the years, numerous elements such as As, Cu, Zn, Cd, Hg, Sn, Pb, Ni, Co, Sb, Bi, Ag, Au, and Mo have been found to inhibit anti-carcinogenic effects of selenium, which may affect the anti-carcinogenic activity of selenium. The interaction between selenium and arsenic has been one of the most extensively studied. The proposed mechanisms of this interaction include the increase of biliary excretion and direct interaction/precipitation of selenium and arsenic, and their effects on zinc finger protein function, cellular signaling and methylation pathways. This article focuses on these proposed mechanisms and how anti-carcinogenic effects of selenium may be affected by arsenic.  相似文献   

18.

Background  

Selenium is part of the antioxidant defence system in animals and humans. The available selenium concentration in soil is low in many regions of the world. The purpose of this study was to evaluate the effect of organic versus inorganic selenium supplementation on selenium status of ewes, their lambs, and slaughter lambs.  相似文献   

19.
In areas where soils are low in bioavailable selenium (Se), potential Se deficiencies cause health risks for humans. Though higher plants have been considered not to require this element, the experience with low-Se soils in Finland has provided evidence that the supplementation of commercial fertilizers with sodium selenate affects positively not only the nutritive value of the whole food chain from soil to plants, animals and humans but also the quantity of plant yields. The level of Se addition has been optimal, and no abnormally high concentrations in plants or in foods of animal origin have been observed. Se levels in serum and human milk indicate that the average daily intake has been within limits considered to be safe and adequate. In fact, plants act as effective buffers, because their growth is reduced at high Se levels. They also tend to synthesize volatile compounds in order to reduce excess Se. On the other hand, when added at low concentrations, Se exerts a beneficial effect on plant growth via several mechanisms. As in humans and animals, Se strengthens the capacity of plants to counteract oxidative stress caused by oxygen radicals produced by internal metabolic or external factors. At proper levels it also delays some of the effects of senescence and may improve the utilization of short-wavelength light by plants. High additions are toxic and may trigger pro-oxidative reactions. Thus, the present supplementation of fertilizers with Se can be considered a very effective and readily controlled way to increase the average daily Se intake nationwide.  相似文献   

20.
《Anthrozo?s》2013,26(4):505-517
ABSTRACT

During 2009–10, I conducted ethnographic fieldwork with 31 immunologists, virologists, and neuroscientists working with either rats or mice. I encountered how the conceptual and physical bounds that have traditionally separated nature from culture, specie from specie, human from animal, are crossed, blurred, and reasserted. In this ambiguous zone, a scientific incuriosity about animals themselves persists, in the practice of inquiring into animal bodies and minds to produce insights into human health and its betterment. This privileging of human health bypasses animals themselves in favor of a view of them as human similars and prone objects, wholly available to persons, and affirms the Heideggarian thesis, that science occupies an arrogated position in modernity. Such incurious encounters with animals produced ideas and pronouncements about the close biological and genetic similarities that humans and animals share, that scientists in my study called “biokinship” and “genekinship.” These terms indicate both a close relation between animals and persons, but they also present the terms upon which hierarchical relations between humans and animals might be arrayed. Equally present among the scientists with whom I worked was a curiosity about animals themselves. This manifested in understandings and articulations of animals as beings with whom one might make a relationship in which mutually understood communication was possible. Attendant to this curiosity about animals themselves was an awareness scientists in my study had of what these relationships, or what I have called fleshy kinships with rats and mice, might mean for scientific practice, for good science, and for human–animal relatedness in the laboratory. This ambiguous situation calls for analytic attention to biotic materiality and process, but equally for attention to rodents as beings with whom scientists interact on an everyday basis, and with whom they form communicative relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号