首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The concentrations of the essential trace elements Cu, Fe, and Zn, and of the mineral elements Ca, K, Mg, and P during the perinatal period in human placenta and in the blood of the mother and the newborn (cord blood) were determined. Breast milk (colostrum and transitory milk) was also included to permit correlations between the different compartments. No correlations were found. The uptake by nutrition and the body-pools of the mother and their mobilization for these elements seem to be sufficiently high for an adequate supply of the fetus and the milk in the geographical region of Munich (Bavaria, FRG) under these investigations. Differences in the mineral- and trace element concentrations of colostrum and transitory milk for the elements P and Zn and to a lesser extent for Ca and Mg were observed. Additionally, breast milk samples from different geographical regions in Bavaria were investigated. Results for the heavy metals Cd, Hg, and Pb, and for the essential trace element Se are also presented for these samples, and can be seen as a reflection of the overall environmental and dietary influences during pregnancy in these geographical regions. ICP (Inductively Coupled Plasma)-emission spectrometry was used for the determination of the elements Cu, Fe, Zn, Ca, K, Mg, and P. For the additionally given elements in the milk-samples anodic stripping voltammetry (DPASV) (Cd, Pb), hydride atomic absorption spectrometry (AAS) (Se), and cold vapor AAS (Hg) were applied.  相似文献   

2.
Using inductively coupled plasma mass spectrometry (ICP-MS) based analytical procedures, the concentration of several trace elements (Mn, As, Pb, Co, Ni, Cu, Zn and Se) was determined in human milk samples collected from a group of healthy lactating Portuguese women (n=44), both on the 2nd day postpartum (i.e., colostrum; n=34) and at 1 month postpartum (i.e., mature milk; n=19). Blood samples (n=44), collected on the 2nd day after parturition, were also analyzed for the same trace elements. No major correlations were observed between the levels of the analyzed trace elements in blood and colostrum samples. All the studied elements, except for Co, Pb and Ni, showed a significant trend for a decrease in concentration in milk during the first month of lactation. This trend was more pronounced for Zn and Se, whose levels decreased to approximately 23% and 44% of their initial mean concentration, respectively. With the exception of Co (r=0.607) and Zn (r=0.487), no significant correlations were observed when comparing the levels of each trace element between samples of colostrum and mature milk. Several inter-element correlations were found within each type of milk sample. The most significant were: (i) Se vs Cu (r=0.828) and Se vs Co (r=0.605) in colostrum samples and (ii) Ni vs Pb (r=0.756), Ni vs Mn (r=0.743) and Se vs Co (r=0.714) in mature milk samples. An inverse correlation between Zn and Se was also found in both types of milk sample; however, it only reached statistical significance for mature milk (r=-0.624).  相似文献   

3.
The aim of the study was to determine Se, Zn, and Cu concentrations in blood plasma and milk of lactating women from central Poland who were in different stages of lactation and to investigate the relationship between the content of trace elements in mothers’ blood and concentrations of microelements in their milk. Se and Zn concentrations in blood plasma of mothers were the lowest and Cu was the highest on the first 4 d of lactation (colostrum, n=43) and were found to be 34.9±11.8 μg/L, 0.51±0.13 mg/L, and 1.70±0.55 mg/L, respectively. The highest plasma level of Se and Zn and the lowest content of Cu could be observed between d 10 and 30 of lactation (mature milk, n=41), and were found to be 54.3±14.6 μg/L for Se (p<0.001), 0.76±0.20 mg/L for Zn (p<0.001), and 1.03±0.30 mg/L (p<0.001) for Cu. The results of Se, Zn, and Cu determination in breast milk samples demonstrate a pattern of decline in their concentration with advancing stages of lactation. We found out that Se, Zn, and Cu concentrations were the highest in colostrum (n=43) and amounted to 24.8±10.1 μg/L, 8.2±2.8 mg/L, and 0.45±0.11 mg/L, respectively. The content of all determined microelements declined significantly during the time of lactation. Statistically significant linear correlation was found between concentrations of Zn in blood plasma and milk in the first stage of lactation. Weak but statistically significant linear correlations were also found between plasma Se content in plasma and in transitional and mature milk of breast-feeding women.  相似文献   

4.
This work is an application of energy dispersive X-ray fluorescence (EDXRF) as analytical technique for trace element determination in human tissues. Potassium (K), calcium (Ca), iron (Fe), copper (Cu), zinc (Zn), bromine (Br), rubidium (Rb) and lead (Pb) were determined directly in blood samples from 66 mothers at delivery after full-term pregnancies. The corresponding 66 cord-blood samples of the newborns were also analysed, in order to find element correlations between maternal and newborn blood at birth. The studied samples were obtained from mothers aged between 15 and 39 years old, the gestational age being between 35 and 41 weeks and the newborns' weight between 2.310 and 4.310 kg. Samples were lyophilised and analysed without any chemical treatment. Very low levels of Pb were found both in maternal and fetal cord blood samples. Cu values ranged from 3 to 13 microg g-1, both for mothers and children. A correlation between Cu and Fe concentrations in maternal and fetal cord blood was found. Zn is considered as one of the key elements in newborn health. Concentrations between 10 and 40 microg g-1 were measured. A positive correlation between Br levels in mothers and children was observed. Positive correlations for mothers were observed between Zn and Rb as well as K and Fe. The corresponding correlations in fetal cord blood samples were not observed, however positive correlations were found between Ca and K; Cu and Fe. The mean concentrations for each element were similar in maternal and in fetal cord blood, except for Cu and Zn, being higher in maternal samples. No correlations between element concentrations and pathologies of the mothers were observed.  相似文献   

5.
The objective of the present study is to calculate linear regressions between a mother and her child with respect to their selenium concentration (ng/g) in the following traits: maternal blood and umbilical cord blood, maternal and child hair, maternal milk and child umbilical cord blood, maternal milk and meconium, maternal blood plasma, and child meconium. The data were collected at Research Hospital of the University of Yüzüncü Yıl from 30 pairs of mothers and their newborn baby. The mean maternal serum Se level in 30 mothers was 68.52 ± 3.57 ng/g and cord plasma level was 119.90 ± 18.08 ng/g. The Se concentration in maternal and neonatal hair was 330.84 ± 39.03 and 1,124.76 ± 186.84 ng/g, respectively. The Se concentration of maternal milk at day 14 after delivery was determined as 68.63 ± 7.78 ng/g (n = 13) and the concentration of Se was 418.90 ± 45.49 ng/g (n = 22) for meconium of neonatal. There was no significant difference between maternal blood and milk Se levels. However, hair Se concentration was significantly higher than milk and maternal blood Se level. For each trait comparison, the average absolute difference in log10-transformed Se concentration was calculated between a mother and her child. The observed average absolute difference was compared with a test distribution of 1,000 resampled bootstrap averages where the number of samples was maintained but the relationship between a mother and her child was randomized among samples (α = 0.05).  相似文献   

6.
Selenium (Se), copper (Cu), and zinc (Zn) concentrations were determined in plasma of 64 mothers at delivery, 58 nonpregnant women, 64 neonates, and 12 infants, aged 2–12 mo. Se and Zn concentrations in mothers at delivery were significantly lower, and Cu higher than in nonpregnant women. Mean Se and Cu concentrations in newborns were statistically lower than those in mothers at delivery, and Zn and Cu concentrations in preterm infants (n=13) were significantly higher than in fullterm infants (n=51). Maternal parity had no significant influence on the distribution of plasma trace element levels. No significant differences were observed in Se and Zn levels in maternal and cord blood plasma according to birth weight, contrary to maternal Cu concentration. Significant correlations were found between maternal and cord blood Se content, and between maternal plasma Cu concentration and birth weight of neonates.  相似文献   

7.
The purpose of this study is to evaluate the cord blood level of toxic and trace elements and to identify their determinants in Terai, Nepal. One hundred pregnant women were recruited from one hospital in Chitwan, Nepal in 2008. The cord blood levels of toxic [lead (Pb), arsenic (As), and cadmium (Cd)], essential trace elements [zinc (Zn), selenium (Se), and copper (Cu)], demographic, socioeconomic, and behavioral variables were measured. The mean values of Pb, As, Cd, Zn, Se, and Cu in cord blood level were found as 31.7, 1.46, 0.39, 2,286, 175, and 667 μg/L, respectively. In the multivariate regression model, cord blood As levels from less educated mothers were higher than those from educated mothers (coefficient = -0.01, 95% confidence interval [CI] = -0.02-0.00). The maternal age was positively associated with the cord blood Cd level (coefficient = 0.02, 95% CI = 0.01-0.03), while it was negatively associated with the cord blood As level (coefficient = -0.01, 95% CI = -0.03--0.01). Cord blood levels of Pb, Zn, Se, and Cu were not associated with maternal age, socioeconomic status, living environment, and smoking status. As and Cd levels were relatively lower than those reported in previous studies in Asia, while the levels of Pb and the trace elements were similar. Less educated mothers are more likely to become a higher in utero As source to their fetus, and fetuses of older mothers were more likely to have higher in utero Cd exposure in Terai, Nepal.  相似文献   

8.
Concentrations of As, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sn, V, and Zn were determined in human whole milk samples from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire; in most of these countries, three groups of subjects representing different socioeconomic conditions were studied. Analytical quality control was a primary consideration throughout. The analytical techniques used were atomic absorption spectrophotometry, atomic emission spectrometry with an inductively coupled plasma, colorimetry, electrochemistry, using an ion-selective electrode and neutron activation analysis. The differences between median concentrations of Ca, Cl, Mg, K, Na, and P (minor elements) were lower than 20% among the six countries. Among trace elements, concentrations observed in Filipino milk for As, Cd, Co, Cr, Cu, F, Fe, Mn, Mo, Ni, Pb, Sb, Se, and V were higher than for milk samples from other countries. The remaining five countries showed a mixed picture of high and low values. In the case of at least some elements, such as, F, I, Hg, Mn, Pb, and Se, the environment appears to play a major role in determining their concentrations in human milk. The nutritional status of the mother, as reflected by her socioeconomic status, does not appear to influence significantly the breast milk concentrations of minor and trace elements. Significant differences exist between the actual daily intakes observed in this study and current dietary recommendations made by, for example, WHO and the US National Academy of Sciences. These differences are particularly large (an order of magnitude or more!) for Cr, F, Fe, Mn, and Mo; for other elements, such as, Ca, Cu, Mg, P, and Zn, they amount to at least a factor 2. In the opinion of the present authors, these findings point to the need for a possible reassessment of the dietary requirements of young infants with respect to minor and trace elements, particularly for the elements Ca, Cr, Cu, F, Fe, Mg, Mn, Mo, P, and Zn.  相似文献   

9.
Cadmium (Cd), lead (Pb), and selenium (Se) concentrations in cord whole blood, sampled from 24 women at the time of delivery in a hospital in Tokyo in 2005, were determined by inductively coupled plasma mass spectrometry with a reaction cell. Signal enhancement caused by nonspectroscopic interference for Se was evident and the standard addition technique was essential for correcting the interference. Median concentration in cord bloods was 0.20 ng/g, 6.7 ng/g (0.67 μg/dL), and 191 ng/g for Cd, Pb and Se, respectively. Lead concentration was lower, whereas Se concentration was higher, than those reported in other countries. The trace element concentration was related to the levels of thyroid stimulating hormone (TSH) and free thyroxin (fT4) in the neonatal blood sampled at 4–6 days postpartum. A significantly negative correlation was observed between Cd concentrations in cord blood and TSH concentration in neonatal blood. The result indicated the possible effect of in utero Cd exposure on thyroid hormone status of newborns and that Cd exposure level should be assessed as a covariate in the survey on the relationship between in utero chemicals (e.g., PCBs) exposure and thyroid hormone status.  相似文献   

10.
Leptin and zinc are involved in the regulation of appetite. Copper is a trace element regulating the functions of several cuproenzymes that are essential for life. To evaluate the relationship between zinc and copper status and the leptin system in humans, we examined whether leptin concentrations in the mother and the newborn correlate with the weight of mother, placenta and newborn. A total of 88 pregnant women at 38-42 weeks' gestation were studied. All infants were categorized as small for gestational age (SGA) (n = 16), average for gestational age (AGA) (n = 59) or large for gestational age (LGA) (n = 13). Leptin, zinc, and copper levels were measured in maternal and cord serum at birth. Maternal BMI and placental weight of the LGA groups were significantly higher than those of the SGA and AGA groups. Cord and maternal leptin levels of the SGA groups were significantly lower than those of the AGA and LGA groups. Maternal serum leptin levels were positively correlated with BMI and maternal zinc levels in all groups. Cord serum leptin levels of all groups were positively correlated with birth weight and placental weight. Birth weight was negatively correlated with maternal and cord copper level of all groups. Umbilical leptin concentrations of SGA newborns correlated with leptin concentrations of their mothers. In all pregnancies, birth weight increases in association with increase in cord leptin level. Our results suggest that maternal zinc but not copper level has an effect on maternal serum leptin levels. The increase in copper level in both maternal and cord blood may contribute to restriction in fetal growth.  相似文献   

11.
李泽政  李云凯 《应用生态学报》2021,32(12):4508-4514
大洋中上层鲨鱼多为金枪鱼渔业的兼捕渔获,因其生长缓慢、繁殖力低等生活史特征,极易被过度捕捞,90%种类资源已近危。而作为长生命周期的顶级捕食者,鲨鱼体内某些过高的痕量元素含量不利于资源恢复。本研究选取10尾东太平洋雌性浅海长尾鲨(Alopias pelagicus)及对应的18尾胚胎,测定其肌肉和肝脏中锌(Zn)、铜(Cu)、铬(Cr)、镍(Ni)、锰(Mn)、硒(Se)、钴(Co)、汞(Hg)、镉(Cd)、铅(Pb)和砷(As) 11种痕量元素,探寻浅海长尾鲨繁殖过程中母体与胚胎间痕量元素的迁移规律。结果表明: 对于必需元素,胚胎两种组织的Cr、Cu、Se和Mn含量均高于母体对应组织,而Ni和Zn含量在胚胎肌肉中较高、肝脏中较低;对于非必需元素,胚胎两种组织的As、Cd和Hg含量均低于母体对应组织。虽然Hg在母体和胚胎组织中含量均较高,但胚胎组织的Se/Hg均大于1,且其在胚胎中的值均大于母体,表明Se在胚胎中具有显著抑制Hg毒性的作用。肝脏作为鲨鱼胚胎发育的主要能量来源,其元素含量在胚胎与母体之间无显著相关性。由此推测,浅海长尾鲨可能存在特定的元素调控机制,以维持胚胎组织中元素含量的稳定。  相似文献   

12.
In this study, we evaluated concentrations of twelve essential and non-essential elements (As, Cd, Co, Cu, Pb, Mg, Mn, Hg, Mo, Se, Ag, and Zn) in tissues of ringed seals (Phoca hispida) and polar bears (Ursus maritimus) of arctic Alaska (USA). All samples were collected between 1995-97 in conjunction with subsistence harvests. The essential elements are reported to help develop reference ranges for health status determination and to help assess known or suspected interactions affecting toxicoses of cadmium (Cd) and mercury (Hg). In some tissues, Cd, Hg, and selenium (Se) were present at concentrations that have been associated with toxicoses in some domestic animals. Nevertheless, tissue levels of all elements were within ranges that have been reported previously in other pinnipeds and polar bears. Significant associations included: Cd with Zn or Cu; Cu with Zn or Ag; and Hg with Se, Zn, or Cu. This study found hepatic Hg:Se molar ratios to be lower than unity and different between the two species. Based upon significant differences in mean tissue elemental concentrations for polar bear versus ringed seal, we concluded that biomagnification factors (bear/seal) were significant for: Cu in liver and muscle; Pb in kidney; Se in kidney and muscle; Zn in liver and muscle; and Hg in liver. Possible explanations for observed elemental correlations (i.e., interactions) and ancillary mechanisms of Cd and Hg detoxification are discussed.  相似文献   

13.
In order to explore the associations between trace elements in dietary intake and the other three biological media (blood, urine, or feces) and inter-element interactions among the latter, we simultaneously collected 72-h diet duplicates, whole blood, and 72-h urine and feces from 120 free-living healthy males in China. Correlations among the toxic (cadmium [Cd], lead [Pb]), and nutritionally essential (zinc [Zn], copper [Cu], iron [Fe], manganese [Mn], selenium [Se], iodine [I]) elements were evaluated using Spearman rank correlation analysis based on analytical data determined by inductively coupled plasma-mass spectrometry. Dietary Cd intakes were highly correlated with the fecal Cd and blood Cd levels. Inverse correlations were found for Fe–Cd and Fe–Pb in both diet versus blood and diet versus feces. Cd–Zn and Cd–Se were significantly directly correlated in the urine and feces. Cd–Se and Pb–Se were negatively correlated in blood. In addition, there existed an extremely significant association between urinary Se and urinary I. Moreover, the other two highly direct correlations were found for Se–Fe and for I–Fe in urine. Improved knowledge regarding their mutual associations is considered to be of fundamental importance to understand more the complex interrelationships in trace element metabolism.  相似文献   

14.
In this study, we evaluated concentrations of twelve essential and non-essential elements (As, Cd, Co, Cu, Pb, Mg, Mn, Hg, Mo, Se, Ag, and Zn) in tissues of bowhead (Balaena mysticetus) and beluga (Delphinapterus leucas) whales from arctic Alaska (USA) and northwestern Canada. Tissue samples were collected between 1983 and 1997, mostly in 1995-97. The essential elements are reported to develop reference ranges for health status determination, and to help assess known or suspected interactions affecting toxicoses of cadmium (Cd) and mercury (Hg). In some tissues, Cd, Hg, and selenium (Se) were present at concentrations that have been associated with toxicoses in some domestic animals. Nevertheless, tissue levels of all elements were within ranges that have been reported previously in marine mammals. While mean Ag concentrations in beluga whale liver were relatively high (15.91 micrograms/g ww), Ag was not associated with hepatic Se levels or age, contrary to previous findings. Significant associations included: Cd with age, Zn, or Cu; Cu with age, Zn or Ag; and Hg with age, Se, Zn, or Cu. This study found hepatic Hg:Se molar ratios to be consistently lower than unity and different between species. Possible explanations for observed elemental correlations (i.e., interactions) and ancillary mechanisms of Cd and Hg detoxification are discussed.  相似文献   

15.
The concentrations of cadmium, lead, selenium, and zinc in blood and seminal plasma were determined in 76 Singapore males. Except for zinc, the concentrations were generally higher in blood than in seminal plasma (cadmium, 1.31 μg/L vs 0.61 μg/L; lead, 82.6 μg/L vs 12.4 μg/L, and selenium, 163.6 μg/L vs 71.5 μg/L). The mean concentration of zinc in seminal plasma was more than 30 times higher than in blood (202 mg/L vs 6.2 mg/L). Significant positive correlations were found between the concentrations in blood and seminal plasma for the two essential trace elements: selenium (r=0.45,p<0.001) and zinc (r=0.25,p<0.05). However, no relationships were found between the concentrations in blood and seminal plasma for two toxic metals (cadmium and lead). Significant inverse correlations were observed between Cd and Zn (r=−0.40,p<0.01), and Pb and Se (r=−0.32,p<0.05) in blood, whereas significant positive correlations were noted between Cd and Se (r=0.45,p<0.01), Cd and Zn (r=0.35,p<0.05), and Se and Zn (r=0.57,p<0.001) in seminal plasma. The physiological significance of these relationships are also discussed in this paper.  相似文献   

16.
厦门中华白海豚体内微量元素的初步分析   总被引:1,自引:0,他引:1  
对5头中华白海豚(Sousa chinensis)9种器官组织中的Cu、Zn、Cd、Pb、Hg、Ni、Se、As、Mg、Mn、Al等微量元素的含量进行了测定。结果表明,在少年个体中,Cu(P<0·05)和Mn(P<0·01)在肝中的含量及Zn在肝(P<0·01)、肠(P<0·05)、胃(P<0·05)和心(P<0·05)中的含量明显高于肌肉中相应微量元素的含量,其余微量元素在各种组织中变化不大;在成年个体中,Pb在肺中的含量明显高于肝(P<0·001)、肌肉(P<0·01)、胃(P<0·01)和心(P<0·05)中的含量,Hg在肝中的含量明显高于胰(P<0·05)。整体上来说,大多数微量元素在成体中的含量高于少年个体,表明微量元素是随年龄的增长而逐渐累积的。有毒重金属如Hg、Cd和Pb在肾、肝以及卵巢中累积较多,提示这些器官承受了较大的毒性压力。  相似文献   

17.
Copeptin, adropin and irisin are polypeptide hormones implicated in energy homostasis and diabetes. The purposes of this study were (1) to compare the copeptin, adropin and irisin concentrations between colostrum, transitional and mature milk and plasma in lactating women with and without GDM and (2) to compare these values with those from non-lactating women. Venous blood samples were obtained before suckling from 15 healthy lactating women aged 26–30 years, 15 lactating women with GDM aged 26–32 years, and 14 age-matched controls aged 25–31 years. Colostrum, transitional milk and mature milk samples were collected just before suckling. The concentration of copeptin was determined by EIA while the concentrations of adropin and irisin were determined by ELISA. The levels of copeptin, adropin and irisin in the colostrum were significantly higher than those in transitional and mature milk samples from healthy women; also, transitional milk had higher copeptin, adropin and irisin concentrations than mature milk. The amounts of copeptin in the colostrum and transitional milk were significantly higher than in mature milk samples from women with GDM, while the amounts of adropin and irisin were significantly lower. The relative concentrations of copeptin, adropin and irisin in the plasma samples from these groups of women were similar to those in the colostrum, transitional and mature milk samples, but the latter concentrations were higher than those in the plasma. These peptides could influence the regulation of metabolic pathways and the postnatal growth and development of different organs in the newborn.  相似文献   

18.
Concentrations of trace elements in newborns, infants, and adults may be significantly different from each other. Serum trace element reference ranges for different age groups are of value for diagnostic purposes. Inductively coupled plasma-mass spectrometry was applied to the determination of the 21 trace elements Ba, Be, Bi, Ca, Cd, Co, Cs, Cu, La, Li, Hg, Mg, Mn, Mo, Pb, Rb, Sb, Sn, Sr, TI, and Zn in a total of 117 sera of individuals representing different age groups. After microwave-assisted acid digestion with high-purity reagents, 20 umbilical cord sera, 5 sera of fully breast-fed infants, 6 sera of formula-fed infants, 66 sera of patients suffering internal diseases, and 20 sera of healthy blood donors were analyzed for trace elements. One serum and two whole-blood reference materials were analyzed for quality control. Experimental concentrations were in good agreement with certified values. Umbilical cord serum concentrations of the essential elements Ca, Co, Cu, and Mg and of the nonessential and toxic elements Ba, Be, Li, Pb, and Sb were elevated compared to the elemental concentrations in the sera of infants and adults. Serum levels of Ba, Ca, Co, Mn, Pb, and Sb of infants were much higher and serum Cu was significantly lower than in adults. Serum Cu increased significantly with age (newborns: 353 microg/L; infants: 755 microg/L; healthy adults: 810 microg/L), whereas for other trace elements no age-dependence could be established.  相似文献   

19.
Beneficial effect of maternal milk is acknowledged, but there is still question whether maternal milk from allergic mother is as good as from healthy one. In our study, we have assayed the effect of cells from colostrum of healthy and allergic mothers on gene expression of cytokines in cord blood cells of newborns of healthy and allergic mothers. Cytokines typical for Th1 (IL-2, IFN-gamma), Th2 (IL-4, IL-13), Tregs (IL-10, TGF-beta), and IL-8 were followed. We were not able to detect significant influence of colostral cells on gene expression of cytokines in cord blood after 2-day coculture using Transwell system. There was no difference in gene expression of cytokines in nonstimulated cord blood cells of newborns of healthy and allergic mothers, but generally increased gene expression of cytokines except IL-10 and TGF-beta after polyclonal stimulation was detected in cord blood cells of children of allergic mothers. There was no difference in IL-10 expression in stimulated cord blood cells of children of healthy and allergic mothers. Gene expression of TGF-beta was even decreased in stimulated cord blood cells of children of allergic mothers in comparison to healthy ones. We have not observed difference in the capacity of colostral cells of healthy and allergic mothers to influence gene expression of cytokines in cord blood cells, but we have described difference in the reactivity of cord blood cells between children of allergic and healthy mothers.  相似文献   

20.
The long-term health threats posed to humans exposed to pollutants acting as endocrine disruptors (EDs) is yet to be quantified. There is insufficient knowledge about the sources and magnitude of exposure to selected polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) during the most sensitive period of fetal development, suggesting the need for a study. Organochlorine pesticides, classified as being persistent organic pollutants (POPs) and potential EDs, were also included in this analysis. Xenobiotics were measured in paired fetal cord blood and maternal breast milk samples. There were no significant differences in the concentrations of PCB-101, PBDE-47, and PBDE-99 between maternal milk and cord blood according to the Wilcoxon test, and the Spearman tests demonstrated significant correlations in β-HCH, γ-HCH, p,p'-DDE, and PCB-118 between maternal milk and cord blood from the same subjects. All others tested (HCB, β-HCH, γ-HCH, p,p'-DDE, p,p'-DDD, p,p'-DDT, PCB-101, PCB-138, PCB-153, PCB-170, PCB-180, PBDE-153) demonstrated significant differences in the same subject women with concentrations significantly higher in maternal milk than in cord blood. The presence of these compounds found in cord blood and maternal milk indicates that both are a source of perinatal exposure to these pollutants. This study opens up the opportunity for new research in estimating a prenatal exposure based on breast milk concentrations of organohalogen compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号