首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Thillet  R Pictet 《FEBS letters》1990,269(2):450-453
Site-directed mutagenesis was used to generate mutants of mouse dihydrofolate reductase more resistant to methotrexate than the wild type enzyme. The mutant genes were used to transfect either DHFR- or DHFR+ cell lines. These mutants, as well as the wild type gene, were able to confer methotrexate resistance to DHFR- CHO cells. The number of selected colonies decreased with increased concentrations of methotrexate. The number of colonies observed at 10 microM methotrexate is correlated with the Ki(MTX) of the enzyme: the higher the Ki, the higher the number of colonies for the corresponding mutant. In contrast, the transfection of DHFR+ cells gave a few numbers of colonies not different for the wild type and the mutants.  相似文献   

2.
A Hussain  D Lewis  M Yu  P W Melera 《Gene》1992,112(2):179-188
Simian virus 40 promoter-enhancer-based mammalian expression plasmids using dihydrofolate reductase (DHFR)-encoding cDNA sequences originally isolated from two methotrexate (MTX)-resistant, DHFR-overproducing Chinese hamster lung cell lines were constructed. One, designated pSVA75, contains a DHFR cDNA that encodes leucine (Leu22) and corresponds to the wild type (wt), MTX-sensitive form of the enzyme [Melera et al., J. Biol. Chem. 263 (1988) 1978-1990]. The other plasmid, pSVA3, contains a cDNA that encodes a novel mutant form of the enzyme in which Leu22 has been changed to Phe [Melera et al., Mol. Cell Biol. 4 (1984) 38-48]. The resulting DHFR displays a 20-fold-enhanced resistance to inhibition by MTX, but maintains the catalytic activity of the wt enzyme [Albrecht et al., Cancer Res. 32 (1972) 1539-1546]. Transfection of DHFR- Chinese hamster ovary cells with either plasmid demonstrated that both were able to reconstitute the DHFR+ phenotype with equal efficiency (i.e., greater than 2.5 x 10(-3), indicating that both the wt and mutant enzymes were catalytically active in transfected cells. In addition, the mutant form of the enzyme was found to act as a dominant selectable marker when transfected into diploid DHFR+ cells, and to allow selection of resistant clones at low MTX concentrations (125 nM MTX) with a frequency of greater than 8 x 10(-4). Moreover, transfected clones were found to amplify their exogenous DHFR sequences to reasonably high levels (42-fold) at relatively low (888 nM) MTX concentrations, suggesting that substantial amplification of DHFR DNA and cotransfected sequences as well, can be achieved with this vector.  相似文献   

3.
4.
Dicistronic mRNA expression vectors efficiently translate a 5' open reading frame (ORF) and contain a selectable marker within the 3' end which is inefficiently translated. In these vectors, the efficiency of translation of the selectable 3' ORF is reduced approximately 100-fold and is highly dependent on the particular sequences inserted into the 5' cloning site. Upon selection for expression of the selection marker gene product, deletions within the 5' ORF occur to yield more efficient translation of the selectable marker. We have generated improved dicistronic mRNA expression vectors by utilization of a putative internal ribosomal entry site isolated from encephalomyocarditis (EMC) virus. Insertion of the EMC virus leader sequence upstream of an ORF encoding either a wildtype or methotrexate resistant dihydrofolate reductase (DHFR) reduces DHFR translation up to 10-fold in a monocistronic DHFR expression vector. However, insertion of another ORF upstream of the EMC leader to produce a dicistronic mRNA does not further reduce DHFR translation. In the presence of the EMC virus leader, DHFR translation is not dependent on sequences inserted into the 5' end of the mRNA. We demonstrate that stable high level expression of inserted cDNAs may be rapidly achieved by selection for methotrexate resistance in DHFR deficient as well as DHFR containing cells. In contrast to previously described dicistronic expression vectors, these new vectors do not undergo rearrangement or deletion upon selection for amplification by propagation in increasing concentrations of methotrexate. The explanation may be either that the EMC virus leader sequence allows internal initiation of translation or that cryptic splice sites in the EMC virus sequence mediate production of monocistronic mRNAs. These vectors may be generally useful to rapidly obtain high level expression of cDNA genes in mammalian cells.  相似文献   

5.
Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels.  相似文献   

6.
The EIa region of an Adenovirus 5 recombinant has been substituted by a modular gene encoding dihydrofolate reductase (DHFR). In this recombinant, the mouse DHFR cDNA was positioned behind sequences of the major late promoter and the complete tripartite leader. The leader sequences end in the normal 5' splice site (SS) of the third leader, so that RNA splicing joins the tripartite leader to a 3' splice site immediately upstream of the DHFR cDNA. At late stages of infection, high levels of DHFR mRNAs were synthesized. At early times in the late stage, this mRNA was efficiently translated; however, at later times translation of DHFR decreased probably due to poor competition with other late mRNAs. Synthesis of DHFR protein from an analogous Adenovirus 5 recombinant containing only the first late leader was studied in parallel. Equivalent levels of DHFR mRNA were expressed after infection with this recombinant virus; however, the efficiency of DHFR translation was at least 20 fold lower than that of the DHFR mRNA containing the tripartite leader. This suggests that the tripartite leader sequence is important for translation in the late stage of infection. As reported previously, the Ad5 recombinant containing only the first leader vastly overexpresses polypeptide IX from a novel mRNA, formed by the splicing of the first leader in the modular DHFR gene to the 3' splice site in the EIb region. Cells infected with this recombinant synthesize very little normal mRNA from the EIb region. Here, we demonstrated that coinfection of 293 cells with this recombinant and wild type Adenovirus 5 also results in decreased EIb mRNA synthesis. We propose that the overproduction of polypeptide IX suppresses mRNA expression from the EIb and IX promoter sites, probably by an autoregulation loop active during lytic growth.  相似文献   

7.
Infection of human cells by adenovirus results in multiple alterations of host gene expression. To examine the effects of viral infection on the expression of a single gene, a line of human cells was developed which is resistant to growth in methotrexate and which contains amplified RNA and protein specific for dihydrofolate reductase (DHFR). Cytogenetic evidence indicated the presence of amplified DNA. Adenovirus infection of these cells caused an induction and subsequent decline in the synthesis of DHFR protein. The maximum DHFR induction occurred 16 to 19 h after infection and reached a level 2.5-fold greater than that observed in uninfected cells. Induction of DHFR protein synthesis was accompanied by concomitant increases in the level of steady-state DHFR-specific cytoplasmic RNA. The relative rate of DHFR mRNA production (i.e., the appearance of DHFR-specific mRNA sequences in the cytoplasm) also increased 2.5-fold during induction. Later in infection, the relative rate of DHFR protein synthesis declined, reaching a level below that observed in uninfected cells. This decline was accompanied by a similar decline in the steady-state levels of DHFR RNA and in the relative rate of synthesis of DHFR mRNA. These data suggest that adenovirus infection controls DHFR gene expression by increasing and subsequently decreasing the relative rate at which DHFR-specific mRNA sequences appear in the cytoplasm and enter the pool of mRNA available for translation.  相似文献   

8.
Expression of human tissue-type plasminogen activator (t-PA) at high levels has been achieved in Chinese hamster ovary (CHO) cells by cotransfection and subsequent coamplification of the transfected sequences. Expression vectors containing the t-PA cDNA gene and dihydrofolate reductase (DHFR) cDNA gene were cotransfected into CHO DHFR-deficient cells. Transformants expressing DHFR were selected by growth in media lacking nucleosides and contained low numbers of t-PA genes and DHFR genes. Stepwise selection of the DHFR+ transformants in increasing concentrations of methotrexate generated cells which had amplified both DHFR genes and t-PA genes over 100-fold. These cell lines expressed elevated levels of enzymatically active t-PA. To optimize both t-PA sequence amplification and t-PA expression, various modifications of the original procedure were used. These included alterations to the DHFR expression vector, optimization of the molar ratio of t-PA to DHFR sequences in the cotransfection, and modification of the methotrexate resistance selection procedure. The structure of the amplified DNA, its chromosomal location, and its stability during growth in the absence of methotrexate are reported.  相似文献   

9.
10.
In an earlier investigation of the influence of high level expression of p21H-ras, rat-1 cells were co-transfected with a selectable vector (pSV2Neo), an amplifiable vector (encoding dihydrofolate reductase; DHFR) and an H-ras expression vector. In this study we have analyzed the gene dose and expression levels of the three co-transfected plasmid vectors in cell lines that had been selected and isolated at different methotrexate concentrations. Growth of the cells in the absence of selection and Southern blot analyses indicate that the transfected vectors are stably co-integrated into the host genome. High expression levels from all three co-transfected vectors were evident at both the mRNA and protein levels, indicating that they are tightly linked in the host genome. The presence of a large amount of unspliced H-ras mRNA in cells expressing high levels of H-ras p21 indicates that processing of mRNA may be rate-limiting. Comparison of the gene dose and expression levels shows that the resistance of cells to increased methotrexate concentrations can occur by different mechanisms. It is concluded that co-transfection of individual plasmid vectors into rat-1 cells, followed by methotrexate selection, is an effective manner of achieving high level expression of proteins in cultured cells.  相似文献   

11.
Dihydrofolate reductase (DHFR) is an intracellular target enzyme for folate antagonist drugs, including methotrexate. In order to compare the binding of methotrexate to human DHFR in solution with that observed in the crystalline state, NMR spectroscopy has been used to determine the conformation of the drug bound to human DHFR in solution. In agreement with what has been observed in the crystalline state, NOE's identified protein and methotrexate protons indicate that methotrexate binds in a non-productive orientation. In contrast to what has been reported for E. coli DHFR in solution, only one bound conformation of methotrexate is observed.  相似文献   

12.
13.
14.
Nucleotide sequences around the boundaries of all open reading frames in the Escherichia coli whole genome were analyzed. Characteristic base biases were observed after the initiation codon and before the termination codon. We examined the effect of the base sequence after the initiation codon on the translation efficiency, by introducing mutations after the initiation codon of the E. coli dihydrofolate reductase (DHFR) gene, considering codon and base biases, and using in vitro and in vivo translation systems. In both assay systems, the two most frequent second codons, AAA and AAU, enhanced the translation efficiency compared with the wild type, whereas the effects of lower frequency codons were not significant. Experiments using 16S rRNA variants with mutations in the putative complementary sequence to the region downstream of the initiation codon showed that the translation efficiency of none of the DHFR mutants was affected. These results demonstrate that the statistically most frequent sequences for the second codon enhance translation efficiency, and this effect seems to be independent of base pairing between mRNA and 16S rRNA.  相似文献   

15.
The cellular receptor for hepatitis B virus (HBV) has not yet been identified. A recent candidate is a homologue of squamous cell carcinoma antigen 1 (SCCA1), a serpin. This study confirms that transfection of SCCA1 into mammalian cells (both hepatocyte-derived and of non-hepatocyte origin) results in increased HBV binding. Furthermore, virus bound to transfected cells is protected significantly from degradation by trypsin (75% compared with 30% in untransfected cells). The possibility that HBV enters cells via the hepatic clearance system for serpin-enzyme complexes was investigated by analysis of the reactive site loop of SCCA1. Functional and deletion mutants of SCCA1 were constructed by site-directed mutagenesis and compared with the wild type construct. In no case was virus binding reduced by functional alterations or deletions within the reactive site loop. A possible role for the low density lipoprotein receptor-related protein (LRP) in binding virus was investigated. SCCA1 transfection of Huh7 cells was shown to result in up-regulation of LRP expression, reaching levels observed in total liver. However, the use of receptor-associated protein (RAP), a competitive ligand for LRP, suggests than LRP up-regulation is not responsible for enhanced virus binding to SCCA1-transfected cells.  相似文献   

16.
Expression of human interleukin 2 (IL-2) at high levels has been achieved in Chinese hamster ovary (CHO) cells by amplification of transfected sequences. Plasmids containing the human IL-2 cDNA or genomic DNA and mouse dihydrofolate reductase (DHFR) cDNA were transfected into DHFR-negative CHO cells. Transformants expressing DHFR were selected in media lacking nucleosides, and cells which amplified both DHFR and IL-2 genes were obtained by exposure to increasing methotrexate (MTX) concentrations. These cell lines constitutively expressed elevated levels of IL-2 at a concentration of 2 mg/liter. These cell lines continued to produce IL-2 stably through at least 1 month, even in the absence of MTX.  相似文献   

17.
18.
19.
Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study.  相似文献   

20.
Summary Terminally differentiating mouse muscle cells were used to examine the relationship between mytogenic withdrawal from the cell cycle and the levels of dihydrofolate reductase (DHFR) mRNA and DHFR activity. Differentiation was induced by removal of fibroblast growth factor activity from the medium. DHFR mRNA was measured by a RNase protection assay. DHFR activity was measured by a spectrophotometric assay and by a [3H]methotrexate binding assay. Proliferative myoblasts contained four DHFR mRNA molecules and 1.8×105 DHFR enzyme molecules. By 12.5 h after induction, when [3H]thymidine labeling indices showed all cells had withdrawn from the cell cycle, DHFR mRNA levels had declined to 0.7 copies per cell. In contrast, myogenic withdrawal did not result in reduced DHFR activity. Qualitatively similar results, i.e. down-regulation of mRNA and constitutive expression of activity, were observed in a methotrexate-selected muscle cell line with >50-fold amplification of the DHFR gene. Enzyme synthesis rate and stability measurements indicated that persistence of DHFR activity in postreplicative cells was due to a long enzyme lifetime rather than to continued synthesis from residual normal DHFR mRNA or an alternative mRNA species not detected by the RNase protection assay. Unlike DHFR, thymidine kinase (TK) activity disappeared rapidly as muscle cells differentiated. Both DHFR mRNA and TK mRNA are expressed in a replication-dependent manner; however, the enzymes encoded by these messages are subject to different fates in postreplicative cells. This work was supported by National Institutes of Health (Bethesda, MD) research grant GM34432, NIH Research Career Development Award AG00334, and a grant from the Medical Research Foundation of Oregon to G. F. M. E. E. S. was supported in part by Predoctoral Training Grant GM07774-08 from the Department of Health and Human Services, Washington, DC. and a N. L. Tartar Research Fellowship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号