首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins.  相似文献   

2.

Background and Aims

Cables composed of long, non-lignified fibre cells enclosed in a cover of much shorter thin-walled, crystal-containing cells traverse the air chambers (lacunae) in leaves of the taller species of Typha. The non-lignified fibre cables are anchored in diaphragms composed of stellate cells of aerenchyma tissue that segment the long air chambers into smaller compartments. Although the fibre cables are easily observed and can be pulled free from the porous-to-air diaphragms, their structure and function have been ignored or misinterpreted.

Methods

Leaves of various species of Typha were dissected and fibre cables were pulled free and observed with a microscope using bright-field and polarizing optics. Maximal tensile strength of freshly removed cables was measured by hanging weights from fibre cables, and Instron analysis was used to produce curves of load versus extension until cables broke.

Key Results and Conclusions

Polarized light microscopy revealed that the cellulose microfibrils that make up the walls of the cable fibres are oriented parallel to the long axis of the fibres. This orientation ensures that the fibre cables are mechanically stiff and strong under tension. Accordingly, the measured stiffness and tensile strength of the fibre cables were in the gigapascal range. In combination with the dorsal and ventral leaf surfaces and partitions that contain lignified fibre bundles and vascular strands that are strong in compression, the very fine fibre cables that are strong under tension form a tensegrity structure. The tensegrity structure creates multiple load paths through which stresses are redistributed throughout the 1–3 m tall upright leaves of Typha angustifolia, T. latifolia, T. × glauca, T. domingensis and T. shuttleworthii. The length of the fibre cables relative to the length of the leaf blades is reduced in the last-formed leaves of flowering individuals. Fibre cables are absent in the shorter leaves of Typha minima and, if present, only extend for a few centimetres from the sheath into the leaf blade of Typha laxmannii. The advantage of the structure of the Typha leaf blade, which enables stiffness to give way to flexibility under windy conditions, is discussed for both vegetative and flowering plants.  相似文献   

3.
Extraction of matrix material, cytochemical methods and stereoanalysiswere used to study cell-wall architecture in leaves of Lygeumspartum, a grass species growing in sub-and regions of the Mediterraneanzone Most tissues were lignified with the exception of mesophyllcells Better results were obtained with NaOH extraction thanwith methylamine extraction The different types of fibres (sub-epidermal,axial and bundle sheath fibres), parenchyma and epidermal cellswere characterized by specific cell-wall organization The differentwall textures were variations of the basic helicoidal model Lygeum spartum L, lignified leaf fibres, cell wall, helicoidal texture, polysaccharide cytochemistry  相似文献   

4.
中华芦荟叶的解剖学、组织化学和植物化学研究   总被引:9,自引:0,他引:9  
用解剖学,组织化学和植物化学方法研究了中华芦荟(Aloe vera L.var.chinensis(Haw.)Berg.)叶的结构,芦荟素的含量及其可能的储藏和合成场所,解剖学研究结果表明,中华芦荟叶的结构由表皮,同化薄壁组织,维管束和储水组织组成,其旱生结构特征比较明显,表皮具厚的角质层,外切向壁次生加厚,气孔下陷,中央储水组织发达,绿色组织没有明显的分化,其中,5个细胞环绕的气孔器和叶基出现的第二轮维管束在芦荟属中首次报道,具有种的特征,中华芦荟叶中所含的蒽醌类次生代谢物主要是芦荟素(barbaloin or aloin),其含量和叶位及同一叶的不同部位有关,植株上剖嫩叶及每一叶的上部含量高于下部老叶和叶的中部,叶基部含量最低,比较被测的解剖学指标和植物化学分析的结果发现,叶中维管束的密度和芦荟素的含量呈明显的正相关,用5%Pb(CH3COOH)2沉淀处理及5%NaOHR颜色反应检测芦荟素的储藏物合成部位,初步结果表明,位于韧皮部端的数个发达大型薄壁细胞是芦荟素的储藏场所,而绿色组织和维管束鞘是可能的合成场所。  相似文献   

5.
刘萍  宋磊  任毅  田先华  张小卉 《西北植物学报》2006,26(11):2208-2213
应用解剖学方法,对铁筷子(Helleborus thibetanusFranch.)(毛茛科)营养器官的结构进行了研究。结果表明,铁筷子根的初生结构观察到三原型、四原型和六原型。营养器官中的维管束在横切面上木质部中的导管分子不呈“V”字形排列;根状茎的次生结构由外向内为表皮、皮层和维管柱,髓射线发达。茎的初生结构中多个维管束排列成环状,维管束鞘分化不明显,节部为单隙三迹,叶迹分别来自于3条维管束或同一条维管束。叶为两面叶,表皮细胞不规则;气孔器只分布于下表皮,为毛茛科典型的无规则型气孔。从铁筷子营养器官的解剖学特点来看,与毛茛科其它植物基本相同,但在营养器官中维管束木质部不呈“V”字形、维管束鞘分化不明显、节部具单叶隙等特征上与其它毛茛科植物不同。  相似文献   

6.
Method of silver nitrate impregnation was used in order to study 50 preparations of not-changed atrioventricular valves of the heart of domestic bulls and 30 preparations of the same valves of adult humans. It has been shown that in heart valves there are certain relationships between striated muscle fibres, blood vessels and nerve elements. The nerve structures of the valves are represented by nerve bundles of different thickness. In their composition there are comparatively thin non-myelinated and thicker myelinated fibres. Towards the free edge of cusps the nerve bundles become thinner and the nerve trunks give off separate thin nerve fibres disposed along the vessels of a capillary type and in some places getting around them. In certain portions of cusps the nerve bundles, some of which have zigzag sinuosity, cross blood vessels in different directions. In man the major mass of blood vessels and nerve elements are disposed near the base of the valve cusps, accompanying the muscle fibre bundles penetrating from the base side. In the bull heart valves an amount of blood vessels and nerve elements is found in considerable portions of the cusps not connected with muscle fibres.  相似文献   

7.
A multidisciplinary approach—anatomy, histochemistry and phytochemistry—was used to investigate the leaf structure, the content and the storage location of barbaloin in the leaves of Aloe vera L. var. chinensis (Haw.) Berg. Xeromorphic characteristics including secondary thickened epidermal cell walls, thicker cuticle, ambiguous differentiation of spongy and palisade tissues in the chlorenchyma, and well-developed aquiferous tissue could be seen in the leaves. Several large parenchymatous cells were observed at the phloem pole of the first ring of vascular bundles. The secondary ring of vascular bundles in the leaf base and the stomata, which are surrounded by five cells, have some classification significance in this species. The density of vascular bundles, the content of barbaloin and the intensity of histochemical reaction differed among leaf numbers L1 (annual leaf), L2 (biennial leaf), L3 (triennial leaf) and L4 (quadrennial leaf), and in different parts of the leaf. These three factors were highest in the youngest leaf, L1, and top parts of all the leaves and lowest in the basal parts and the oldest leaf, L4. The density of vascular bundles had a positive correlation to the content of barbaloin. The histochemical results revealed that the small sheath cells that surrounded the bundles might be the location of barbaloin synthesis and the large parenchymatous cells beneath the sheath might be the storage places of this metabolite.  相似文献   

8.
An attempt is made to clarify the mechanisms of the scale anchorage in two Cyprinidae, the goldfish and the carp. Scanning and transmission electron microscope investigations
revealed the presence of two different structures, denticles and collagen fibre bundles involved in the anchoring processes. These strucures are located on the upper part of the
scales. Denticles form minute processes on the circuli of the anterior areas of the scales. Collagen fibre bundles arise from the superficial layer connecting the scale to the overlying dermis. These fibre bundles show structural similarities with the Sharpey's fibres and are named Sharpey-fibre-like bundles. Such fibres of attachment, not previously reported, can be considered as usual anchoring structures in fish scales.  相似文献   

9.
Leaves of Gleditsia triacanthos L. are served by three leaf traces that subdivide in the node to produce subsidiary bundles. The subsidiary bundles differentiate basipetally in the stem and acropetally in the petiole using the original leaf trace bundles (those that developed acropetally) as templates for their development. Within the pulvinus, the acropetal bundle components merge to form the rachis vasculature consisting of a semicircular arc and a ventral chord; several small bundles diverge to form ventral ridge bundles. Mixing of bundles occurs during vascularization of the lateral rachillae axes. Each diverging rachilla axis receives bundles from the semicircular arc, the ventral chord, and a ridge bundle in a relatively reproducible and predictable pattern. During this process the main rachis vasculature is gradually depleted, but the ridge bundles are reconstituted following divergence of each rachilla pair. The distal rachilla pair is vascularized by a bilateral partitioning of the entire rachis vasculature; a remnant of the central leaf trace terminates in a subulate terminal appendage. Vascularization of the bipinnate G. triacanthos leaf is compared to that of the simple Populus deltoides leaf.  相似文献   

10.
Summary An observation of intimate nerve-Purkinje fibre associations in false tendons of sheep heart is reported. Nerve bundles were observed in deep clefts of Purkinje fibres, in channels running between coupled Purkinje cells and embedded within Purkinje cells, as well as in the outer connective tissue sheath. Most nerve terminals in these areas were filled with small clear vesicles and a few large dense-cored vesicles. Only a few axons with many small dense-cored vesicles were observed.Intimate associations (separation, 60 to 90 nm) between the Purkinje cell and nerve varicosity were observed in the deep clefts. Similar close appositions were also present where nerves were embedded in Purkinje cells. In these cases the Purkinje cell enclosing the nerve bundle formed intercellular junctions with its own sarcolemma.Elaborate sarcolemmal folds with multi-vesicular bodies were also frequently observed near nerve bundles and varicosities. The identity of the transmitter is unknown although the nerves forming intimate associations with Purkinje cells have a morphology typical of cholinergic nerves.  相似文献   

11.
采用光镜和扫描电镜对山东分布的蹄盖蕨科2属(蹄盖蕨属和假蹄盖蕨属)7种植物的根、根茎、叶柄、叶轴、叶表皮、表皮毛和孢子囊进行了形态解剖学的系统研究.结果表明,在形态解剖学方面2属植物的共同特征为:根均为无髓中柱;叶柄基部的双柱型维管束向上渐靠近联合形成1个周韧型维管束;叶上下表皮垂周壁均呈波状;气孔主要为胞环型、周胞型或极附型.2属植物的不同特征是:蹄盖蕨属植物体无毛;而假蹄盖蕨属植物叶片和叶轴上均生有腺毛;蹄盖蕨属植物根皮层外侧为薄壁细胞,假蹄盖蕨属则为棕色厚壁细胞环.研究结果表明蹄盖蕨科为一个自然分类群,并支持假蹄盖蕨属的成立.  相似文献   

12.
Large, intermediate, and small bundles and contiguous tissues of the leaf blade of Hordeum tvulgare L. ‘Morex’ were examined with the transmission electron microscope to determine their cellular composition and the distribution and frequency of the plasmodesmata between the various cell combinations. Plasmodesmata are abundant at the mesophyll/parenchymatous bundle sheath, parenchymatous bundle sheath/mestome sheath, and mestome sheath/vascular parenchyma cell interfaces. Within the bundles, plasmodesmata are also abundant between vascular parenchyma cells, which occupy most of the interface between the sieve tube-companion cell complexes and the mestome sheath. Other vascular parenchyma cells commonly separate the thick-walled sieve tubes from the sieve tube-companion cell complexes. Plasmodesmatal frequencies between all remaining cell combinations of the vascular tissues are very low, even between the thin-walled sieve tubes and their associated companion cells. Both the sieve tube-companion cell complexes and the thick-walled sieve tubes, which lack companion cells, are virtually isolated symplastically from the rest of the leaf. Data on plamodesmatal frequency between protophloem sieve tubes and other cell types in intermediate and large bundles indicate that they (and their associated companion cells, when present) are also isolated symplastically from the rest of the leaf. Collectively, these data indicate that both phloem loading and unloading in the barley leaf involve apoplastic mechanisms.  相似文献   

13.
水稻穗颈维管束数及其与穗一次枝梗数之比(V/R)是与籼粳分化有关的重要性状,采用籼粳交(圭630/02428)杂种F1花药培养获得的DH群体,对水稻穗颈维管束数,穗一次枝梗数及V/R比进行了QTL分析,检测到3个控制穗颈维管束数的QTL;其中,效应最大的qVB-8的贡献率为31.1%,加性效应值为1.96%,增效等位基因来自灿稻亲本圭630,2个控制一次枝梗数的QTL效应较小,但分别与控制穗颈维管束数的2个QTL同位,检测到影响V/R比的3个QTL,其中,效应最大的qV/R-1的贡献率为25.3%,被定位于第1染色体上,与落粒性基因sh-2紧密连锁(亦或为一因多效)。此外,还检测到4对和2对分别控制穗颈维管束数和V/R比的互作QTL。结果分析表明,水稻穗颈维管束数与穗一次枝梗数受不同的多基因系统控制,但这2个多基因系统的某些位点在基因组中具有同位性;在第1染色体上,控制V/R比,且效应最大的qV/R-1所在的染色体区段在水稻籼粳分化过程中可能具有重要作用。  相似文献   

14.
15.
Expansins are primary agents inducing cell wall extension, and are therefore obvious targets in biotechnological applications aimed at the modification of cell size in plants. In trees, increased fibre length is a goal of both breeding and genetic engineering programmes. We used an α-expansin Ptt EXPA1 that is highly abundant in the wood-forming tissues of hybrid aspen ( Populus tremula L. ×  P. tremuloides Michx.) to evaluate its role in fibre elongation and wood cell development. Ptt EXPA1 belongs to Subfamily A of α-expansins that have conserved motifs at the N- and C-termini of the mature protein. When PttEXPA1 was over-expressed in aspen, an extract of the cell wall-bound proteins of the transgenic plants exhibited an increased expansin activity on cellulose–xyloglucan composites in vitro , indicating that Ptt EXPA1 is an active expansin. The transgenic lines exhibited increased stem internode elongation and leaf expansion, and larger cell sizes in the leaf epidermis, indicating that Ptt EXPA1 protein is capable of increasing the growth of these organs by enhancing cell wall expansion in planta . Wood cell development was also modified in the transgenic lines, but the effects were different for vessel elements and fibres, the two main cell types of aspen wood. Ptt EXPA1 stimulated fibre, but not vessel element, diameter growth, and marginally increased vessel element length, but did not affect fibre length. The observed differences in responsiveness to expansin of these cell types are discussed in the light of differences in their growth strategies and cell wall composition.  相似文献   

16.
Using data obtained through anatomy and morphology, we used cladistics to examine the monophyly of Senghas's proposed classification of Maxillaria cushion plants and his placement of Mormolyca ringens. Trignidium obtusum was chosen as the outgroup. Leaves have multicellular hairs sunken in crypts, primarily anomocytic or primarily tetracytic stomatal apparatuses, homogeneous mesophyll, and scattered fibre bundles. Three types of adaxial hypodermis were observed: (1) water-storage cells, (2) fibre bundles scattered among water-storage cells, and (3) fibre bundles scattered among chlorenchymatous cells. Abaxial hypodermis of fibre bundles occurs in several Maxillaria species and in Trigonidium obtusum. At the midvein of the leaf, adaxial mesophyll cells of most species are anticlinally extended and empty, and the abaxial mesophyll is usually collenchymatous. Vascular bundles are collateral and usually in a single series. Pseudobulb epidermal cell walls are thin, or outer walls are thickened. Ground tissue consists of water-storage and assimilatory cells with vascular bundles and associated lacunae scattered throughout. Roots are velamentous and exodermal cell walls are usually n-thickened with tenuous bands of scalarifom thickenings on longitudinal walls. Tilosomes may be plaited, baculate, or spongy. Endodermal cell walls are usually U-thickened and pericycle cell walls are usually O-thickened opposite phloem sectors. Stegmata line the periphery of the thickened pericycle cells opposite phloem sectors in M. picta. Pith may be parenchymatous or sclerenchymatous. According to our phylogenetic analysis, Mormolyca ringens is consistently nested within the cladistic structure of Maxillaria. Therefore, Maxillaria likely is paraphyletic if Mormolyca ringens is recognized as generically distinct. It appears that Senghas's subgroup divisions of the unifoliate pseudobulbous maxillarias may also be artificial.  相似文献   

17.
Satellite cells were visualized in living muscle fibres of the frog. Single fibres or bundles consisting of a few fibres were isolated after treatment with collagenase, and viewed under the light microscope. Subsequent electron microscopy of identified cells confirmed that they were satellite muscle cells. Under the light microscope, satellite cells appear as fusiform cells, tapering into long fine processes usually orientated parallel to the muscle fibre axis. Horseradish peroxidase injected into the muscle fibre was not transferred to the satellite cells.  相似文献   

18.
Localization of hyaluronan in various muscular tissues   总被引:4,自引:0,他引:4  
Summary The histochemical distribution of hyaluronan (hyaluronic acid, HYA) was analysed in various types of muscles in the rat by use of a hyaluronan-binding protein (HABP) and the avidin-biotin/peroxidase complex staining procedure. Microwave-aided fixation was used to retain the extracellular location of the glycosaminoglycan. In skeletal muscles, HYA was detected in the connective tissue sheath surrounding the muscles (epimysium), in the septa subdividing the muscle fibre bundles (perimysium) and in the connective tissue surrounding each muscle fibre (endomysium). HYA was heterogeneously distributed in all striated muscles. In skeletal muscles with small fibre dimensions (e.g., the lateral rectus muscle of the eye and the middle ear muscles), HYA was predominantly accumulated around the individual muscle fibres. Perivascular and perineural connective tissue formations were distinctly HYA-positive. In cardiac muscles, HYA was randomly distributed around the branching and interconnecting muscle fibres. In comparison, smooth muscle tissue was devoid of HYA.  相似文献   

19.
Vascular bundles and contiguous tissues of leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) were examined with light and transmission electron microscopes to determine their cellular composition and the frequency of plasmodesmata between the various cell combinations. The large vascular bundles typically are surrounded by two bundle sheaths, an outer chlorenchymatous bundle sheath and an inner mestome sheath. In addition to a chlorenchymatous bundle sheath, a partial mestome sheath borders the phloem of the intermediate vascular bundles, and at least some mestome-sheath cells border the phloem of the small vascular bundles. Both the walls of the chlorenchymatous bundlesheath cells and of the mestome-sheath cells possess suberin lamellae. The phloem of all small and intermediate vascular bundles contains both thick- and thin-walled sieve tubes. Only the thin-walled sieve tubes have companion cells, with which they are united symplastically by pore-plasmodesmata connections. Plasmodesmata are abundant at the Kranz mesophyll-cell-bundlesheath-cell interface associated with all sized bundles. Plasmodesmata are also abundant at the bundle-sheathcell-vascular-parenchyma-cell, vascular-parenchyma-cellvascular-parenchyma-cell, and mestome-sheath-cell-vascular-parenchyma-cell interfaces in small and intermediate bundles. The thin-walled sieve tubes and companion cells of the large vascular bundles are symplastically isolated from all other cell types of the leaf. The same condition is essentially present in the sieve-tube-companion-cell complexes of the small and intermediate vascular bundles. Although few plasmodesmata connect either the thin-walled sieve tubes or their companion cells to the mestome sheath of small and intermediate bundles, plasmodesmata are somewhat more numerous between the companion cells and vascular-parenchyma cells. The thick-walled sieve tubes are united with vascular-parenchyma cells by pore-plasmodesmata connections. The vascular-parenchyma cells, in turn, have numerous plasmodesmatal connections with the bundle-sheath cells.This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively.  相似文献   

20.
Some ultrastructural changes can be observed in diseased Saccharum officinarum L. (cv. Cuba 120-78) plants with visual symptoms of yellow leaf syndrome (YLS), used to discriminate between healthy and diseased plants. Abaxial epidermis of diseased leaves shows a large amount of adhered superficial bodies, which partially occluded some stomata. Bundle sheath cells surrounding the bottom of phloem of diseased leaves are separated from the conducting tissues by a large layer of an amorphous matrix similar to wax. Debris of the end wall can be observed in large xylem vessels. Sometimes, spherical bodies similar to phytoplasma can be observed in the intercellular spaces of bundle sheath cells. These particles have never been observed in healthy plants. YLS was also associated to an increase of the concentration of reducing sugars, glucose index, and glycoproteins recovered in juices whereas the amount of sucrose decreases. Sugarcane juices obtained from both healthy and YLS-affected Cuba 120-78 cultivars of sugarcane contained putrescine (PUT), cadaverine (CAD), spermidine and spermine (SPM) as free and macromolecules-conjugated compounds. Only CAD and SPM appeared as acid-soluble conjugates to small molecules whereas PUT and CAD are the major polyamines (PAs) conjugated to macromolecules, mainly to high molecular mass glycoproteins. The disease was associated to an increase in total PA fraction. Arginase and ornithine decarboxylase activities, responsible for the synthesis of PUT, were higher in YLS juices than in those obtained from healthy plants. CAD and SPM presumably conjugated mostly to chlorogenic, syringic and ferulic acids in juices from YLS plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号