首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of several alternative genetic engineering based strategies in order to accelerate Saccharomyces cerevisiae autolysis for wine production has been studied. Both constitutively autophagic and defective in autophagy strains have been studied. Although both alternatives lead to impaired survival under starvation conditions, only constitutively autophagic strains, carrying a multicopy plasmid with the csc1-1 allele under the control of the TDH3 promoter, undergo accelerated autolysis in the experimental conditions tested. Fermentation performance is impaired in the autolytic strains, but industrial strains carrying the above-mentioned construction are still able to complete second fermentation of a model base wine. We suggest the construction of industrial yeasts showing a constitutive autophagic phenotype as a way to obtain second fermentation yeast strains undergoing accelerated autolysis.  相似文献   

2.
During the aging step of sparkling wines and wines aged on lees, yeast cells kept in contact with the wine finally die and undergo autolysis, releasing cellular compounds with a positive effect on the wine quality. In view of the interest of autolysis for wine properties, biotechnologists have tried to improve autolytic yield during winemaking. In this work we used genetic engineering techniques to construct an autolytic industrial strain by expressing the csc1‐1 allele from the RDN1 locus. The expression of this mutant allele, that causes a “constitutive in autophagy phenotype,” resulted in accelerated autolysis of the recombinant strain. Although autophagic phenotype due to csc1‐1 expression has been reported to require the mutant allele in multicopy, autolytic acceleration was achieved by expressing only one or two copies of the gene under the control of the constitutive promotor pTDH3. The acceleration of autolysis together with the unaltered fermentative capacity, strongly supported the overexpression of csc1‐1 allele as a strategy to obtain wines with aged‐like properties in a shortened time. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed.  相似文献   

4.
Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed.  相似文献   

5.
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.  相似文献   

6.
The cryophilic wine yeasts Saccharomyces bayanus YM-84 and YM-126 were used for hybridization with the mesophilic wine yeast Saccharomyces cerevisiae OC-2. All six hybrids were stable in tetrad analysis and pulsed field gel electrophoresis, even after twenty subcultures over two years. The fermentabilities of these hybrids at a low temperature of 7°C were superior to the mesophilic wine yeast and the same as the cryophilic wine yeasts. Conversely, their fermentabilities at the intermediate temperatures of 28 and 35°C were similar to the mesophilic wine yeast. For laboratory-scale wine-making using Koshu grape juice at 10°C, the fermentability of these hybrids was superior to the mesophilic wine yeast. They also produced higher amounts of malic acid and flavor compounds such as higher alcohols, β-phenylethyl alcohol, isoamyl acetate and β-phenylethyl acetate, and lower amounts of acetic acid than those of OC-2. These results suggest that the cryophilic wine yeast S. bayanus is useful for improving the low temperature fermentation ability of wine yeast strains.  相似文献   

7.
This review focuses on the role of proteins in the production and maintenance of foam in both sparkling wines and beer. The quality of the foam in beer but especially in sparkling wines depends, among other factors, on the presence of mannoproteins released from the yeast cell walls during autolysis. These proteins are hydrophobic, highly glycosylated, and their molecular masses range from 10 to 200 kDa--characteristics that allow mannoproteins to surround and thus stabilize the gas bubbles of the foam. Both the production and stabilization of foam also depend on other proteins. In wine, these include grape-derived proteins such as vacuolar invertase; in beer, barley-derived proteins, such as LTP1, protein Z, and hordein-derived polypeptides, are even more important in this respect than mannoproteins.  相似文献   

8.
Metabolic engineering of malolactic wine yeast   总被引:4,自引:0,他引:4  
  相似文献   

9.
10.
11.
Accelerated autolysis of Saccharomyces cerevisiae mc2 in synthetic wine medium enabled the release of 3.7 mg peptide nitrogen/l, concomitantly with an increase in antioxidant properties (243 μmol FeSO4/l in the case of ferric reducing antioxidant power and 0.5% in 2,2-diphenyl-1-picrylhydrazyl radical scavenging) and antihypertensive activity (22% in angiotensin I-converting enzyme inhibitory activity). Sequential inoculation of a proteolytic Oenococcus oeni strain in the synthetic medium after yeast autolysis produced an increase in peptide nitrogen concentration of 1.5 mg/l after 48 h of growth. After this incubation time an improvement in antihypertensive and antioxidant activities was detected. Oenococcus oeni X2L could give additional value to wine because of the bioactive peptides with multifunctional beneficial activity released as consequence of its proteolytic activity.  相似文献   

12.
Commercial polysaccharase preparations are applied to winemaking to improve wine processing and quality. Expression of polysaccharase-encoding genes in Saccharomyces cerevisiae allows for the recombinant strains to degrade polysaccharides that traditional commercial yeast strains cannot. In this study, we constructed recombinant wine yeast strains that were able to degrade the problem-causing grape polysaccharides, glucan and xylan, by separately integrating the Trichoderma reesei XYN2 xylanase gene construct and the Butyrivibrio fibrisolvens END1 glucanase gene cassette into the genome of the commercial wine yeast strain S. cerevisiae VIN13. These genes were also combined in S. cerevisiae VIN13 under the control of different promoters. The strains that were constructed were compared under winemaking conditions with each other and with a recombinant wine yeast strain expressing the endo-beta-1,4-glucanase gene cassette (END1) from B. fibrisolvens and the endo-beta-1,4-xylanase gene cassette (XYN4) from Aspergillus niger, a recombinant strain expressing the pectate lyase gene cassette (PEL5) from Erwinia chrysanthemi and the polygalacturonase-encoding gene cassette (PEH1) from Erwinia carotovora. Wine was made with the recombinant strains using different grape cultivars. Fermentations with the recombinant VIN13 strains resulted in significant increases in free-flow wine when Ruby Cabernet must was fermented. After 6 months of bottle ageing significant differences in colour intensity and colour stability could be detected in Pinot Noir and Ruby Cabernet wines fermented with different recombinant strains. After this period the volatile composition of Muscat d'Alexandria, Ruby Cabernet and Pinot Noir wines fermented with different recombinant strains also showed significant differences. The Pinot Noir wines were also sensorial evaluated and the tasting panel preferred the wines fermented with the recombinant strains.  相似文献   

13.
Parietal yeast mannoproteins play a very important role in the overall vinification process. Their production and release, both during winemaking and aging on lees, depends on the specific yeast strain and the nutritional conditions. The following enological functions of parietal yeast mannoproteins have been described: (a) adsorption of ochratoxin A; (b) combination with phenolic compounds; (c) increased growth of malolactic bacteria; (d) inhibition of tartrate salt crystallization; (e) interaction with flor wines; (f) prevention of haze; (g) reinforcement of aromatic components; (h) wine enrichment during aging on fine lees; (i) yeast flocculation and autolysis in sparkling wines. Further discoveries related to their enological functions are foreseeable. Yeast-derived mannoproteins may well induce chemical, sensorial and health benefits, thus greatly improving wine quality.  相似文献   

14.
Modulation of volatile sulfur compounds by wine yeast   总被引:2,自引:0,他引:2  
Sulfur compounds in wine can be a ‘double-edged sword’. On the one hand, certain sulfur-containing volatile compounds such as hydrogen sulfide, imparting a rotten egg-like aroma, can have a negative impact on the perceived quality of the wine, and on the other hand, some sulfur compounds such as 3-mercaptohexanol, imparting fruitiness, can have a positive impact on wine flavor and aroma. Furthermore, these compounds can become less or more attractive or repulsive depending on their absolute and relative concentrations. This presents an interesting challenge to the winemaker to modulate the concentrations of these quality-determining compounds in wine in accordance with consumer preferences. The wine yeast Saccharomyces cerevisiae plays a central role in the production of volatile sulfur compounds. Through the sulfate reduction sequence pathway, the HS- is formed, which can lead to the formation of hydrogen sulfide and various mercaptan compounds. Therefore, limiting the formation of the HS- ion is an important target in metabolic engineering of wine yeast. The wine yeast is also responsible for the transformation of non-volatile sulfur precursors, present in the grape, to volatile, flavor-active thiol compounds. In particular, 4-mercapto-4-methylpentan-2-one, 3-mercaptohexanol, and 3-mercaptohexyl acetate are the most important volatile thiols adding fruitiness to wine. This paper briefly reviews the metabolic processes involved in the production of important volatile sulfur compounds and the latest strategies in the pursuit of developing wine yeast strains as tools to adjust wine aroma to market specifications.  相似文献   

15.
16.
Wine yeast deals with many stress conditions during its biotechnological use. Biomass production and its dehydration produce major oxidative stress, while hyperosmotic shock, ethanol toxicity and starvation are relevant during grape juice fermentation. Most stress response mechanisms described in laboratory strains of Saccharomyces cerevisiae are useful for understanding the molecular machinery devoted to deal with harsh conditions during industrial wine yeast uses. However, the particularities of these strains themselves, and the media and conditions employed, need to be specifically looked at when studying protection mechanisms.  相似文献   

17.
As important as the blend of base wines before bottling, one of the most important steps in the champagne-making process is the long ageing on lees. Two yeast strains of Saccharomyces cerevisiae MC001 and MC002, used in champagne wine production, were allowed to autolyse. After 8 days of autolysis, active dry yeasts adapted to wine released 1.7- to 1.8-fold more nitrogen compounds than nonadapted active dry yeast. The nitrogen content (total, proteins, peptides and amino) present in autolysates was measured for yeasts adapted to wine. The composition of free amino acids and amino acids constituting peptides showed no difference between the two strains of yeast used. Studies of intracellular proteolytic activity and release of peptides showed no correlation between these two phenomena. These results indicate that yeasts adapted to wine give results similar to those that occur in wine during ageing. Journal of Industrial Microbiology & Biotechnology (2002) 29, 134–139 doi: 10.1038/sj.jim.7000291 Received 19 December 2001/ Accepted in revised form 14 June 2002  相似文献   

18.
A low-cost procedure was designed for easy and rapid response-on-demand production of fresh wine yeast for local wine-making. The pilot plant produced fresh yeast culture concentrate with good microbial quality and excellent oenological properties from four selected wine yeasts. The best production yields were obtained using 2% sugar beet molasses and a working culture volume of less than 60% of the fermenter capacity. The yeast yield using 2% sugar grape juice was low and had poor cell viability after freeze storage, although the resulting yeast would be directly available for use in the winery. The performance of these yeasts in commercial wineries was excellent; they dominated must fermentation and improved its kinetics, as well as improving the physicochemical parameters and the organoleptic quality of red and white wines.  相似文献   

19.
The yeast Saccharomyces cerevisiae is one of the most popular model organisms. It was the first eukaryote whose genome was sequenced. Since then many functional analysis projects have tried to find the function of many genes and to understand its metabolism in a holistic way. Apart from basic science this microorganism is of great interest in several biotechnology processes, such as winemaking. Only global studies of the cell as a whole can help us to understand many of the technical problems facing winemaking. DNA chip technology is one of the most promising tools for the analysis of cell physiology. Yeast has been the model organism for the development of this technique. Many of the studies can be applied to improve our knowledge of wine strains. Nevertheless wine strains are quite different in some aspects from the laboratory reference strains so a particular study of wine strains and especially during the winemaking process is needed. During the past two years some groups have started this study and the first results have been published. We review here the current state of the knowledge of wine yeast and the capacity of DNA chip technology for its improvement.  相似文献   

20.
Alcoholic fermentation is an essential step in wine production that is usually conducted by yeasts belonging to the species Saccharomyces cerevisiae. The ability to carry out vinification is largely influenced by the response of yeast cells to the stress conditions that affect them during this process. In this work, we present a systematic analysis of the resistance of 14 commercial S. cerevisiae wine yeast strains to heat shock, ethanol, oxidative, osmotic and glucose starvation stresses. Significant differences were found between these yeast strains under certain severe conditions, Vitilevure Pris Mouse and Lalvin T73 being the most resistant strains, while Fermiblanc arom SM102 and UCLM S235 were the most sensitive ones. Induction of the expression of the HSP12 and HSP104 genes was analyzed. These genes are reported to be involved in the tolerance to several stress conditions in laboratory yeast strains. Our results indicate that each commercial strain shows a unique pattern of gene expression, and no clear correlation between the induction levels of either gene and stress resistance under the conditions tested was found. However, the increase in mRNA levels in both genes under heat shock indicates that the molecular mechanisms involved in the regulation of their expression by stress function in all of the strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号