首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frequency-domain fluorescence spectroscopy was used to investigate the effects of temperature on the intensity and anisotropy decays of the single tryptophan residues of Staphylococcal nuclease A and its nuclease-conA-SG28 mutant. This mutant has the beta-turn forming hexapeptide, Ser-Gly-Asn-Gly-Ser-Pro, substituted for the pentapeptide Tyr-Lys-Gly-Gln-Pro at positions 27-31. The intensity decays were analyzed in terms of a sum of exponentials and with Lorentzian distributions of decay times. The anisotropy decays were analyzed in terms of a sum of exponentials. Both the intensity and anisotropy decay parameters strongly depend on temperature near the thermal transitions of the proteins. Significant differences in the temperature stability of Staphylococcal nuclease and the mutant exist; these proteins show characteristic thermal transition temperatures (Tm) of 51 and 30 degrees C, respectively, at pH 7. The temperature dependence of the intensity decay data are shown to be consistent with a two-state unfolding model. For both proteins, the longer rotational correlation time, due to overall rotational diffusion, decreases dramatically at the transition temperature, and the amplitude of the shorter correlation time increases, indicating increased segmental motions of the single tryptophan residue. The mutant protein appears to have a slightly larger overall rotational correlation time and to show slightly more segmental motion of its Trp than is the case for the wild-type protein.  相似文献   

2.
We used frequency-domain fluorescence spectroscopy to measure the fluorescence lifetime and anisotropy decays of indole in propylene glycol, and of the tryptophan emission of melittin monomer and tetramer in water solutions at 5 degrees C. We obtained an increase in resolution of the anisotropy decays by using multiple excitation wavelengths, chosen to provide a range of fundamental anisotropy values. The multi-excitation wavelength anisotropy decays were analyzed globally to recover a single set of correlation times with wavelength-dependent anisotropy amplitudes. Simulated data and kappaR2 surfaces are shown to reveal the effect of multi-wavelength data on the resolution of complex anisotropy decays. For both indole and melittin, the anisotropy decays are heterogeneous and require two correlation times to fit the frequency-domain data. For indole in propylene glycol at 5 degrees C we recovered correlation times of 0.59 and 4.10 ns, which appear to be characteristic of the rigid and asymmetric indole molecule. For melittin monomer the correlation times were 0.13 and 1.75 ns, and for melittin tetramer 0.12 and 3.96 ns. The shorter and longer correlation times of melittin are due to segmental motions and overall rotational diffusion of the polypeptide.  相似文献   

3.
We describe the construction and performance of a variable-frequency phase-modulation fluorometer. This instrument, which provides modulation frequencies from 1 to 200 MHz, was constructed using commercially available components. To facilitate the introduction of these instruments into other laboratories we describe in detail the chosen components and the principles of operation. The present light source is a continuous-wave helium-cadmium laser, which provides convenient excitation wavelengths of 325 and 442 nm. Modulation of the incident light is provided by one of several electro-optic modulators. The extent of modulation ranges from 1.0 to 0.2 as the frequency increases from 1 to 200 MHz. Phase angles and demodulation factors are measured using the cross-correlation method. The closely spaced frequencies are provided by two direct frequency synthesizers. The phase and modulation measurements are accurate to 0.2 degrees and 0.002, respectively, from 1 to 200 MHz. This accuracy allows considerable resolution of complex decay laws. The usefulness of frequency-domain fluorometry for the resolution of multiexponential decays is illustrated by the analysis of several difficult mixtures. As examples, we resolved a two-component mixture of anthracene (4.1 ns) and 9,10-diphenylanthracene (6.3 ns), and confirmed that the intensity decay of NADH in aqueous buffer is at least a double exponential (0.2 and 0.86 ns). We also resolved an especially difficult mixture of anthracene (4.1 ns) and 9-methylanthracene (4.5 ns), and a three-component mixture with decay times of 1.3, 4.1 and 7.7 ns. Frequency-domain fluorometers appear to be particularly useful for determination of complex decays of fluorescence anisotropy. This capability is illustrated by the determination of rotational correlation times as short as 47 ps for p-bis[2-(5-phenyloxazolyl)]benzene (POPOP) in hexane at 40 degrees C, and by the resolution of the two correlation times of anisotropic rotators such as perylene and 9-aminoacridine. Resolution of two anisotropy decay times for 9-aminoacridine is a difficult test because these correlation times differ by less than 2-fold. The resolution of multiexponential decays of intensity and anisotropy possible with this instrument is at least equivalent to that obtained using state-of-the-art time-resolved instruments based on mode-locked laser sources. The ease and rapidity of frequency-domain measurements, the relative simplicity of the equipment, the accuracy of the measurements and the lack of significant systematic errors indicate that frequency-domain fluorometry will be widely useful in chemical and biochemical research.  相似文献   

4.
Kang JS  Abugo OO  Lakowicz JR 《Biopolymers》2002,67(2):121-128
The metal-ligand complex, [Ru(bpy)2(dppz)]2+ (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine) (Ru-BD), was used as a spectroscopic probe for studying nucleic acid dynamics. The Ru-BD complex displays a long lifetime of over 100 ns and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. To further show the usefulness of this luminophore (Ru-BD) for probing DNA dynamics, we examined its intensity and anisotropy decays when intercalated into supercoiled and linear pTZ18U plasmids using frequency-domain fluorometry with a light-emitting diode (LED) as the modulated light source. Compared to the supercoiled plasmids with an average intensity decay time of 120.8 ns at 25 degrees C, we obtained somewhat longer lifetimes for the linear plasmids ((tau) = 141.4 ns at 25 degrees C), suggesting a more efficient shielding from water by the linear plasmids. The anisotropy decay data also showed longer rotational correlation times for the linear plasmids (495 and 35 ns at 25 degrees C) as compared to the supercoiled plasmids (412 and 27 ns at 25 degrees C). The slow and fast rotational correlation times appear to be consistent with the bending and torsional motions of the plasmids, respectively. The anisotropy values were quite similar, although the values of the supercoiled plasmids were slightly higher in both the steady-state and anisotropy decay measurements. These results indicate that Ru-BD can be applied in the study of both bending and torsional dynamics of nucleic acids.  相似文献   

5.
Heterogeneous fluorescence intensity decays of tryptophan in proteins are often rationalized using a model which proposes that different rotameric states of the indole alanyl side-chain are responsible for the observed fluorescence lifetime heterogeneity. We present here the study of a mutant of carp parvalbumin bearing a single tryptophan residue at position 102 (F102W) whose fluorescence intensity decay is heterogeneous and assess the applicability of a rotamer model to describe the fluorescence decay data. We have determined the solution structure of F102W in the calcium ligated state using multi-dimensional nuclear magnetic resonance (NMR) and have used the minimum perturbation mapping technique to explore the possible existence of multiple conformations of the indole moiety of Trp102 of F102W and, for comparison, Trp48 of holo-azurin. The maps for parvalbumin suggest two potential conformations of the indole side-chain. The high energy barrier for rotational isomerization between these conformers implies that interwell rotation would occur on time-scales of milliseconds or greater and suggests a rotamer basis for the heterogeneous fluorescence. However, the absence of alternate Trp102 conformers in the NMR data (to within 3 % of the dominant species) suggests that the heterogeneous fluorescence of Trp102 may arise from mechanisms independent of rotameric states of the Trp side-chain. The map for holo-azurin has only one conformation, and suggests a rotamer model may not be required to explain its heterogeneous fluorescence intensity decay. The backbone and Trp102 side-chain dynamics at 30 degrees C of F102W has been characterized based on an analysis of (15)N NMR relaxation data which we have interpreted using the Lipari-Szabo formalism. High order parameter (S(2)) values were obtained for both the helical and loop regions. Additionally, the S(2) values imply that the calcium binding CD and EF loops are not strictly equivalent. The S(2) value for the indole side-chain of Trp102 obtained from the fluorescence, NMR relaxation and minimum perturbation data are consistent with a Trp moiety whose motion is restricted.  相似文献   

6.
Enhanced resolution of rapid and complex anisotropy decays was obtained by measurement and analysis of data from progressively quenched samples. Collisional quenching by acrylamide was used to vary the mean decay time of indole or of the tryptophan fluorescence from melittin. Anisotropy decays were obtained from the frequency-response of the polarized emission at frequencies from 4 to 2,000 MHz. Quenching increases the fraction of the total emission, which occurs on the subnanosecond timescale, and thereby provides increased information on picosecond rotational motions or local motions in proteins. For monoexponential subnanosecond anisotropy decays, enhanced resolution is obtained by measurement of the most highly quenched samples. For complex anisotropy decays, such as those due to both local motions and overall protein rotational diffusion, superior resolution is obtained by simultaneous analysis of data from quenched and unquenched samples. We demonstrate that measurement of quenched samples greatly reduces the uncertainty of the 50-ps correlation time of indole in water at 20 degrees C, and allows resolution of the anisotropic rotation of indole with correlation times of 140 and 720 ps. The method was applied to melittin in the monomeric and tetrameric forms. With increased quenching, the anisotropy data showed decreasing contributions from overall protein rotation and increased contribution from picosecond tryptophan motions. The tryptophan residues in both the monomeric and the tetrameric forms of melittin displayed substantial local motions with correlation times near 0.16 and 0.06 ns, respectively. The amplitude of the local motion is twofold less in the tetramer. These highly resolved anisotropy decays should be valuable for comparison with molecular dynamics simulations of melittin.  相似文献   

7.
W Birmachu  D D Thomas 《Biochemistry》1990,29(16):3904-3914
We have investigated the microsecond rotational motions of the Ca-ATPase in rabbit skeletal sarcoplasmic reticulum (SR), by measuring the time-resolved phosphorescence anisotropy of erythrosin 5-isothiocyanate (ERITC) covalently and specifically attached to the enzyme. Over a wide range of solvent conditions and temperatures, the phosphorescence anisotropy decay was best fit by a sum of three exponentials plus a constant term. At 4 degrees C, the rotational correlation times were phi 1 = 13 +/- 3 microseconds, phi 2 = 77 +/- 11 microseconds, and phi 3 = 314 +/- 23 microseconds. Increasing the solution viscosity with glycerol caused very little effect on the correlation times, while decreasing the lipid viscosity with diethyl ether decreased the correlation times substantially, indicating that the decay corresponds to rotation of the protein within the membrane, not to vesicle tumbling. The normalized residual anisotropy (A infinity) is insensitive to viscosity and temperature changes, supporting the model of uniaxial rotation of the protein about the membrane normal. The value of A infinity (0.20 +/- .02) indicates that each of the three decay components can be analyzed as a separate rotational species, with the preexponential factor Ai equal to 1.25X the mole fraction. An empirically accurate measurement of the membrane lipid viscosity was obtained, permitting a theoretical analysis of the correlation times in terms of the sizes of the rotating species. At 4 degrees C, the dominant correlation time (phi 3) is too large for a Ca-ATPase monomer, strongly suggesting that the enzyme is primarily aggregated (oligomeric).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In biological macromolecules, fluorophores often exhibit multiple depolarizing motions that require multiple lifetimes and rotational relaxation times to define fluorescence intensity and anisotropy decays. The related analysis of time-correlated single-photon counting data becomes uncertain due to the multitude of decay parameters and numerical sensitivity to deconvolution of the instrument response function (IRF) via discretization of integrals. By using simulations we show that improved discretizations based on quadratic and cubic local approximations of the IRF yield more accurate estimation of short rotational relaxation times and lifetimes than the commonly used Grinvald-Steinberg discretization, which in turn appears more reliable than two discretizations based on linear local approximations of the IRF. In addition, our simulation suggests that cubic approximation is the most advantageous in discriminating complex heterogeneous and homogeneous anisotropy decay. We show that among three different information criteria, the Akaike information criterion is best suited for detection of heterogeneity in rotational relaxation times. It is capable of detecting heterogeneity even when anisotropy decay appears homogeneous within statistical errors of estimation.  相似文献   

9.
A mode of internal motion of single tryptophan, Trp 86, of Streptomyces subtilisin inhibitor, was analyzed from its time-resolved fluorescence. The intensity and anisotropy decays of Trp 86 were measured in the picosecond range. These decays were analyzed with theoretical expressions derived assuming that the indole ring of tryptophan as an asymmetric rotor rotates around covalent bonds connecting indole with the peptide chain and an effective quencher of fluorescence of Trp 86 is the nearby SS bond of Cys 35-Cys 50. First, the intensity decays at 6 degrees, 20 degrees, and 40 degrees C were analyzed, and then the both decays of the intensity and anisotropy at 20 degrees C were simultaneously simulated with common parameters. Constants concerning geometrical structures of the protein used for the analysis were obtained from x-ray crystallographic data. Best fit between the observed and calculated decay curves was obtained by a nonlinear least squares method by adjusting a quenching constant averaged over the rotational angles, koq height of the potential energy, p, and three of six diffusion coefficients, Dxx, Dyy, Dzz, Dxy, Dyz, and Dzx, as variable parameters. The obtained results revealed that the internal motion of the indole ring became faster, the quenching rate of the fluorescence of Trp 86 was enhanced and the height of potential energy became lower at higher temperatures, and suggested that Trp 86 was wobbling around the long axis of the indole ring in the protein.  相似文献   

10.
We report the results of investigation on the spectroscopic properties of a new fluorescent lipophylic probe. The fluorophore o-aminobenzoic acid was covalently bound to the acyl chain hexadecylamine, producing the compound 2-amino-N-hexadecyl-benzamide. The behavior of the probe was dependent on the polarity of the medium: absorption and emission spectral position, quantum yield and lifetime decay indicate distinct behavior in water compared to ethanol and cyclohexane. The probe dissolves in the organic solvents, as indicated by the very low value of steady state fluorescence anisotropy and the short rotational correlation times obtained from fluorescence anisotropy decay measurements. On the other hand, the probe has low solubility in water, leading to the formation of aggregates in aqueous medium. The complex absorption spectrum in water was interpreted as originating from different forms of aggregation, as deduced from the wavelength dependence of anisotropy parameters. The probe interacts with surfactants in pre-micellar and micellar forms, as observed in experiments in the presence of sodium n-dodecylsulphate (SDS), n-cetyltrimethylammonium bromide (CTAB); 3-(dodecyl-dimethylammonium) propane-1-sulphonate (DPS) and 3-(hexadecyl-dimethylammonium) propane-1-sulphonate (HPS), and with vesicles of the phospholipid dimiristoyl-phosphatidylcholine (DMPC). The results demonstrate that AHBA is able to monitor properties like surface electric potential and phase transition of micelles and vesicles.  相似文献   

11.
We have measured the microsecond rotational motions of myosin heads in muscle cross-bridges under physiological ionic conditions at 4 degrees C, by detecting the time-resolved phosphorescence of eosin-maleimide covalently attached to heads in skeletal muscle myofibrils. The anisotropy decay of heads in rigor (no ATP) is constant over the time range from 0.5 to 200 microsecond, indicating that they do not undergo rotational motion in this time range. In the presence of 5 mM MgATP, however, heads undergo complex rotational motion with correlation times of about 5 and 40 microsecond. The motion of heads in relaxed myofibrils is restricted out to 1 ms, as indicated by a nonzero value of the residual anisotropy. The anisotropy decay of eosin-labeled myosin, extracted from labeled myofibrils, also exhibits complex decay on the 200-microsecond time scale when assembled into synthetic thick filaments. The correlation times and amplitudes of heads in filaments (under the same ionic conditions as the myofibril experiments) are unaffected by MgATP and very similar to the values for heads in relaxed myofibrils. The larger residual anisotropy and longer correlation times seen in myofibrils are consistent with a restriction of rotational motion in the confines of the myofibril protein lattice. These are the first time-resolved measurements under physiological conditions of the rotational motions of cross-bridges in the microsecond time range.  相似文献   

12.
The intramolecular dynamics of the excimer forming dipyrenyl lipids (DipynPC) of different chain lengths (n) in ethanol and in dimyristoylphosphatidycholine (DMPC) membranes was investigated by the use of frequency-domain fluorescence intensity decay technique. Based on a 3-state model, the extent of aggregation and rotational rate of the two intralipid pyrene moieties in the dipyrenyl lipids were estimated from the frequency-domain data. In ethanol (20 degrees C), the rotational rate for DipynPC increased progressively as n was varied from 4 to 12. At the gel (L beta)-to-liquid crystalline (L alpha) phase transition of DMPC (approximately 23 degrees C), the rotational rate increased and aggregation decreased significantly for Dipy10PC, whereas only the rotational rate was changed for Dipy4PC. In the presence of 30 mol% cholesterol, significant increases in both the rotational rate and aggregation were observed for Dipy10PC in both L beta and L alpha phases. However, for the case of Dipy4PC, an increase in the rotational rate but a decrease in the aggregation were noticed only in the L beta phase, and no similar changes were detected in the L alpha phase. Our results indicate differential effects of cholesterol on the conformational dynamics of acyl chains at different depths of the membranes.  相似文献   

13.
A theroy relating rotational Brownian motion to the time autocorrelation function of the intensity of radiation from a fluorescent system composed of spherical rotors is presented. The calculation shows three relaxation times, two associated with the rotational diffusion, and the third associated with the natural decay of the fluorescence. The correlation function contains terms that relax independently of the fluorescence decay time, thus arbitrarily extending the time range over which rotational diffusion can be studied by fluorescence.  相似文献   

14.
Molecular dynamics simulations are used to measure the change in properties of a hydrated dipalmitoylphosphatidylcholine bilayer when solvated with ethanol, propanol, and butanol solutions. There are eight oxygen atoms in dipalmitoylphosphatidylcholine that serve as hydrogen bond acceptors, and two of the oxygen atoms participate in hydrogen bonds that exist for significantly longer time spans than the hydrogen bonds at the other six oxygen atoms for the ethanol and propanol simulations. We conclude that this is caused by the lipid head group conformation, where the two favored hydrogen-bonding sites are partially protected between the head group choline and the sn-2 carbonyl oxygen. We find that the concentration of the alcohol in the ethanol and propanol simulations does not have a significant influence on the locations of the alcohol/lipid hydrogen bonds, whereas the concentration does impact the locations of the butanol/lipid hydrogen bonds. The concentration is important for all three alcohol types when the lipid chain order is examined, where, with the exception of the high-concentration butanol simulation, the alcohol molecules having the longest hydrogen-bonding relaxation times at the favored carbonyl oxygen acceptor sites also have the largest order in the upper chain region. The lipid behavior in the high-concentration butanol simulation differs significantly from that of the other alcohol concentrations in the order parameter, head group rotational relaxation time, and alcohol/lipid hydrogen-bonding location and relaxation time. This appears to be the result of the system being very near to a phase transition, and one occurrence of lipid flip-flop is seen at this concentration.  相似文献   

15.
Time-resolved fluorescence studies have been performed on (+)-anti-7,8-dihydrodiol-9,10-epoxybenzo[a]pyrene adducts in double-stranded poly(dG-dC).(dG-dC). Part of the adduct population gives rise to excimer fluorescence. The heterogeneous fluorescence emission decay curves at 22 degrees C could be resolved into three components with lifetimes: 0.4 ns, 3 ns and 24 ns for the total fluorescence (monomer and excimer emission), and 0.5 ns, 5 ns and 24 ns, respectively, for excimer emission alone. The relative amplitudes for the longer lifetimes were larger for the pure excimer population than for the mixed population. The fluorescence polarization anisotropy decay curves were resolved into two components of rotational correlation times: 0.4 ns and 25 ns for the total fluorescence and 0.3 ns and 33 ns for the excimer fluorescence. We interpret the two rotational correlation times to correspond to local motion of the adduct and segmental motion of the polynucleotide, respectively.  相似文献   

16.
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.  相似文献   

17.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

18.
We have measured the microsecond rotational motions of myosin heads in contracting rabbit psoas muscle fibers by detecting the transient phosphorescence anisotropy of eosin-5-maleimide attached specifically to the myosin head. Experiments were performed on small bundles (10-20 fibers) of glycerinated rabbit psoas muscle fibers at 4 degrees C. The isometric tension and physiological ATPase activity of activated fibers were unaffected by labeling 60-80% of the heads. Following excitation of the probes by a 10-ns laser pulse polarized parallel to the fiber axis, the time-resolved emission anisotropy of muscle fibers in rigor (no ATP) showed no decay from 1 microsecond to 1 ms (r infinity = 0.095), indicating that all heads are rigidly attached to actin on this time scale. In relaxation (5 mM MgATP but no Ca2+), the anisotropy decayed substantially over the microsecond time range, from an initial anisotropy (r0) of 0.066 to a final anisotropy (r infinity) of 0.034, indicating large-amplitude rotational motions with correlation times of about 10 and 150 microseconds and an overall angular range of 40-50 degrees. In isometric contraction (MgATP plus saturating Ca2+), the amplitude of the anisotropy decay (and thus the amplitude of the microsecond motion) is slightly less than in relaxation, and the rotational correlation times are about twice as long, indicating slower motions than those observed in relaxation. While the residual anisotropy (at 1 ms) in contraction is much closer to that in relaxation than in rigor, the initial anisotropy (at 1 microsecond) is approximately equidistant between those of rigor and relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We examined the frequency-domain intensity decays of the intrinsic tryptophan fluorescence (Trp-59) from ribonuclease T1 (EC 3.1.27.3) (RNAase T1). At pH 5.5 in the native state (below 30 degrees C), the intensity decay of the single tryptophan residue is a single-exponential process. Conditions which result in protein unfolding were found to induce more complex intensity decays. At temperatures above 40 degrees C, or in the presence of guanidine hydrochloride, the intensity decays became obviously double exponential. In general, the main effect of temperature or guanidine was to induce a second subnanosecond component in the intensity decay. The increased complexity of the decays could not be explained by a unimodal distribution of decay times. These results indicate that conformational dispersion of protein structure can be one origin of the multi-exponential decays which are generally observed for protein fluorescence.  相似文献   

20.
Enzyme I of the bacterial phosphoenolpyruvate: glycose phosphotransferase system has 2 tryptophan residues/monomer, as determined spectrophotometrically. The tryptophan fluorescence has been investigated with the aid of nanosecond time-resolved techniques. The decay of the fluorescence intensity was analyzed in terms of a biexponential function. The contribution of the emission associated with the shorter decay constant increases from 17-19% at 1 degree C to 43-44% at room temperature. Decay-associated spectra obtained with Enzyme I indicate different spectral distributions associated with the two decay constants. The measurement of tumbling of Enzyme I as a function of temperature revealed a transition of rotational rates between 5 and 15.5 degrees C. Global analysis allowed decomposition of the anisotropy decay into a formulation consistent with monomer and dimer rotational contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号