首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the post-germination growth of seeds, protein bodies fuse with one another and are converted to a central vacuole. To investigate this transition, protein-body membranes from dry seeds of pumpkin (Cucurbita sp.) were prepared and their protein components characterized. Five major proteins (designated MP23, MP27, MP28, MP32 and MP73) were detected in the protein-body membranes. A cDNA clone encoding both MP27 and MP32 has been isolated. The deduced precursor polypeptide was composed of a hydrophobic signal sequence, MP27 and MP32, in that order. A putative site of cleavage between MP27 and MP32 was located on the COOH-terminal side of asparagine 278, an indication that the post-translational cleavage may occur by the action of a vacuolar processing enzyme that converts proprotein precursors of seed proteins into the mature forms. Immunoelectron microscopic analysis showed that MP27 and MP32 were associated with protein-body membrane of dry pumpkin seeds. Among the five membrane proteins, MP27 and MP32 disappeared most rapidly during seedling growth. The degradation of MP27 and MP32 starts just after seed germination and proceeds in parallel with the transformation of the protein bodies into a vacuole.  相似文献   

2.
A cDNA clone encoding a soybean allergen, Gly m Bd 28K, has been isolated. The clone has a 1567-bp cDNA insert with a 1419-bp open reading frame and a 148-bp 3'-untranslated region, followed by a polyadenylation tail. The open reading frame was shown to encode a polypeptide composed of 473 amino acids. The chemically determined amino acid sequences of the peptides obtained from the allergen, including its N-terminal peptide, were shown to be contained in the N-terminal region of the amino acid sequence deduced from the cDNA, showing that the first half of the cDNA encodes the allergen with a preceding segment of 21 amino acids. The peptide fragment including the allergen was expressed as a fusion protein with glutathione S-transferase in Escherichia coli and immunoblotted with the sera of soybean-sensitive patients and the monoclonal antibody against the allergen. Furthermore, homology analyses demonstrate that the polypeptide for the cDNA exhibits high homology with the MP27/MP32 proteins in pumpkin seeds and the carrot globulin-like protein. This finding suggests that the polypeptide may consist of a 21-amino acid segment as a part of the signal peptide and the proprotein, which may be converted to two mature proteins, Gly m Bd 28K and a 23-kDa protein, during the development of soybean cotyledons.  相似文献   

3.
A vacuolar cysteine proteinase, designated SH-EP, is synthesized in cotyledons of germinated Vigna mungo seeds and is responsible for degradation of the seed proteins accumulated in protein bodies (protein storage vacuoles). SH-EP belongs to the papain proteinase family and has a large N-terminal prosegment consisting of 104 amino acid residues and a C-terminal prosegment of 10 amino acid residues. It has been suggested that an asparaginyl endopeptidase, V. mungo processing enzyme 1 (VmPE-1), is involved in the N-terminal post-translational processing of SH-EP. The recombinant proform of SH-EP (rSH-EP) was produced in Escherichia coli cells, purified to homogeneity and refolded by stepwise dialysis. 31P-NMR analysis of intact germinated cotyledons revealed that the vacuolar pH of cotyledonary cells changes from 6.04 to 5.47 during seed germination and early seedling growth. rSH-EP was converted in vitro to the mature form through autocatalytic processing at a pH mimicking the vacuolar pH at the mid and late stages of seed germination, but not at the pH of the early stage. VmPE-1 accelerated the rate of processing of rSH-EP in vitro at the pH equivalent to the vacuolar pH at the early and mid stages of germination. In addition, the cleavage sites of the in vitro processed intermediates and the mature form of SH-EP were identical to those of SH-EP purified from germinated cotyledons of V. mungo. We propose that the asparaginyl endopeptidase (VmPE-1)-mediated processing mainly functions in the activation of proSH-EP at the early stage of seed germination, and both VmPE-1-mediated and autocatalytic processings function synergistically in the activation of proSH-EP in cotyledons at the mid and late stages.  相似文献   

4.
Vesicle transport and processing of the precursor to 2S albumin in pumpkin   总被引:6,自引:0,他引:6  
Cell fractionation of pulse-chase-labeled developing pumpkin cotyledons demonstrated that proprotein precursor to 2S albumin is transported from the endoplasmic reticulum to dense vesicles and then to the vacuoles, in which pro2S albumin is processed to the mature 2S albumin. Immunocytochemical analysis showed that dense vesicles of about 300 nm in diameter mediate the transport of pro2S albumin to the vacuoles.
The primary structure of the precursor (16 578 Da) to pumpkin 2S albumin has been deduced from the nucleotide sequence of an isolated cDNA insert. The presence of a hydrophobic signal peptide at the N-terminus indicates that the precursor is a preproprotein that is converted into pro2S albumin after cleavage of the signal peptide. N-terminal sequencing of the pro2S albumin in the isolated vesicles revealed that the signal peptide is cleaved off co-translationally on the C-terminal side of alanine residue 22 of prepro2S albumin. By contrast, post-translational cleavages occur on the C-terminal sides of asparagine residues 35 and 74, which are conserved among precursors to 2S albumin from different plants. Hydropathy analysis revealed that the two asparagine residues are located in the hydrophilic regions of pro2S albumin. These findings suggest that a vacuolar processing enzyme can recognize exposed asparagine residues on the molecular surface of pro2S albumin and cleave the peptide bond on the C-terminal side of each asparagine residue to produce mature 2S albumin in the vacuoles.  相似文献   

5.
Proprotein precursors of vacuolar components are transportedfrom endoplasmic reticulum to the dense vesicles, and then targetedto the vacuoles, where they are processed proteolytically totheir mature forms by a vacuolar processing enzyme. Immunoelectronmicroscopy of the maturing endosperm of castor bean (Ricinnscommunis) revealed that the vacuolar processing enzyme is selectivelylocalized in the dense vesicles as well as in the vacuolar matrix.This indicates that the vacuolar processing enzyme is transportedto vacuoles via dense vesicles as does IIS globulin, a majorseed protein. During seed maturation of castor bean, an increasein the activity of the vacuolar processing enzyme in the endospermpreceded increases in amounts of total protein. The enzymaticactivity reached a maximum at the late stage of seed maturationand then decreased during seed germination concomitantly withthe degradation of seed storage proteins. We examined the distributionof the enzyme in different tissues of various plants. The processingenzyme was found in cotyledons of castor bean, pumpkin and soybean,as well as in endosperm, and low-level processing activity wasalso detected in roots, hypocotyls and leaves of castor bean,pumpkin, soybean, mung bean and spinach. These results suggestthat the proprotein-processing machinery is widely distributedin vacuoles of various plant tissues. (Received July 11, 1993; Accepted August 17, 1993)  相似文献   

6.
7.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.), the bulk of protein in axial organs and cotyledons is accounted for by water-soluble proteins (albumins). In the cells of embryo, proteins are predominantly located in the cytosol, whereas the fraction of cell structures precipitate in the range from 1000 to 20000 g, accounting for only an insignificant part of total protein. Among the proteins of this fraction, there were no major components that could play a role of storage proteins. The aim of this work was to study deposition of protein in the vacuoles of cells of recalcitrant seeds of horse chestnut. Light microscopy and specific staining of protein and phytin did not detect protein bodies in the vacuoles of axial organs and cotyledons. Electron microscopy revealed traces of phytin in the vacuoles, but there were no formed globoids or considerable amount of protein therein. It is possible that precisely the absence of typical storage proteins and genetically determined desiccation in the course of maturation of recalcitrant seeds of horse chestnut stipulated preservation of the vacuoles that in mature recalcitrant seeds were not transformed into protein bodies.  相似文献   

8.
A novel protein, MP73, was specifically found on the membrane of protein storage vacuoles of pumpkin seed. MP73 appeared during seed maturation and disappeared rapidly after seed germination, in association with the morphological changes of the protein storage vacuoles. The MP73 precursor deduced from the isolated cDNA was composed of a signal peptide, a 24-kD domain (P24), and the MP73 domain with a putative long alpha-helix of 13 repeats that are rich in glutamic acid and arginine residues. Immunocytochemistry and immunoblot analysis showed that the precursor-accumulating (PAC) vesicles (endoplasmic reticulum-derived vesicles responsible for the transport of storage proteins) accumulated proMP73, but not MP73, on the membranes. Subcellular fractionation of the pulse-labeled maturing seed demonstrated that the proMP73 form with N-linked oligosaccharides was synthesized on the endoplasmic reticulum and then transported to the protein storage vacuoles via PAC vesicles. Tunicamycin treatment of the seed resulted in the efficient deposition of proMP73 lacking the oligosaccharides (proMP73 Delta Psi) into the PAC vesicles but no accumulation of MP73 in vacuoles. Tunicamycin might impede the transport of proMP73 Delta Psi from the PAC vesicles to the vacuoles or might make the unglycosylated protein unstable in the vacuoles. After arrival at protein storage vacuoles, proMP73 was cleaved by the action of a vacuolar enzyme to form a 100-kD complex on the vacuolar membranes. These results suggest that PAC vesicles might mediate the delivery of not only storage proteins but also membrane proteins of the vacuoles.  相似文献   

9.
Protein storage vacuoles were examined for the induction of H+-pyrophosphatase (H+-PPase), H+-ATPase, and a membrane integral protein of 23 kD after seed germination. Membranes of protein storage vacuoles were prepared from dry seeds and etiolated cotyledons of pumpkin (Cucurbita sp.). Membrane vesicles from etiolated cotyledons had ATP- and pyrophosphate-dependent H+-transport activities. H+-ATPase activity was sensitive to nitrate and bafilomycin, and H+-PPase activity was stimulated by potassium ion and inhibited by dicyclohexylcarbodiimide. The activities of both enzymes increased after seed germination. On immunoblot analysis, the 73-kD polypeptide of H+-PPase and the two major subunits, 68 and 57 kD, of vacuolar H+-ATPase were detected in the vacuolar membranes of cotyledons, and the levels of the subunits of enzymes increased parallel to those of enzyme activities. Small amounts of the subunits of the enzymes were detected in dry cotyledons. Immunocytochemical analysis of the cotyledonous cells with anti-H+-PPase showed the close association of H+-PPase to the membranes of protein storage vacuoles. In endosperms of castor bean (Ricinus communis), both enzymes and their subunits increased after germination. Furthermore, the vacuolar membranes from etiolated cotyledons of pumpkin had a polypeptide that cross-reacted with antibody against a 23-kD membrane protein of radish vacuole, VM23, but the membranes of dry cotyledons did not. The results from this study suggest that H+-ATPase, H+-PPase, and VM23 are expressed and accumulated in the membranes of protein storage vacuoles after seed germination. Overall, the findings indicate that the membranes of protein storage vacuoles are transformed into those of central vacuoles during the growth of seedlings.  相似文献   

10.
《FEBS letters》1987,213(2):329-332
Glyoxysomal malate dehydrogenase was synthesized as a larger molecular mass precursor in germinating pumpkin cotyledons. In pulse-chase experiments, the radioactive larger molecular mass precursor (38 kDa) disappeared and was converted to the mature form (33 kDa) of the enzyme. When the radiolabeled cotyledon was fractionated into cytosolic and organellar fractions, the larger molecular mass precursor was first recovered in the cytosolic fraction and then only after a 20 min chase the mature form was found in the organellar fraction. This indicates that the higher molecular mass precursor is synthesized in the cytosol and the processing of the transient precursor is coupled to the transport into glyoxysomes.  相似文献   

11.
Two tonoplast intrinsic proteins (TIP) of pumpkin seeds, pMP23and MP28, were expressed in yeast cells under control of theGAL1 promoter, and the subcellular localization of the proteinswas analyzed. The pMP23 and MP28 stably accumulated in the yeastvacuolar membrane when the proteins were expressed in the proteinaseA-deficient strain (pep4), which lacks the activities of vacuolarproteases. However, pMP23 and MP28 did not accumulate in thewild-type strain; the expressed pMP23 and MP28 were degradedin a proteinase A-dependent manner. These results indicate thatpMP23 and MP28 are transported to the vacuolar membrane whenexpressed in yeast. 5Present address: Department of Biochemistry and Molecular Biology,The Pennsylvania State University, University Park, PA16802,U.S.A.  相似文献   

12.
Vacuolar processing enzymes (VPEs) are cysteine proteinases responsible for maturation of various vacuolar proteins in plants. A larger precursor to VPE synthesized on rough endoplasmic reticulum is converted to an active enzyme in the vacuoles. In this study, a precursor to castor bean VPE was expressed in a pep4 strain of the yeast Saccharomyces cerevisiae to examine the mechanism of activation of VPE. Two VPE proteins of 59 and 46 kDa were detected in the vacuoles of the transformant. They were glycosylated in the yeast cells, although VPE is not glycosylated in plant cells in spite of the presence of two N-linked glycosylation sites. During the growth of the transformant, the level of the 59 kDa VPE increased slightly until a rapid decrease occurred after 9 h. By contrast, the 46 kDa VPE appeared simultaneously with the disappearance of the 59 kDa VPE. Vacuolar processing activity increased with the accumulation of the 46 kDa VPE, but not of the 59 kDa VPE. The specific activity of the 46 kDa VPE was at a similar level to that of VPE in plant cells. The 46 kDa VPE instead of proteinase A mediated the conversion of procarboxypeptidase Y to the mature form. This indicates that proteinase A responsible for maturation of yeast vacuolar proteins can be replaced functionally by plant VPE. These findings suggest that an inactive VPE precursor synthesized on the endoplasmic reticulum is transported to the vacuoles in the yeast cells and then processed to make an active VPE by self-catalytic proteolysis within the vacuoles.  相似文献   

13.
Heim  Ute  Wang  Qing  Kurz  Thorsten  Borisjuk  Ljudmilla  Golombek  Sabine  Neubohn  Birgit  Adler  Klaus  Gahrtz  Manfred  Sauer  Norbert  Weber  Hans  Wobus  Ulrich 《Plant molecular biology》2001,47(4):461-474
A cDNA coding for a 54 kDa signal sequence containing protein has been isolated from a faba bean cotyledonary library and characterized. The deduced protein is designated Vicia faba SBP-like protein (VfSBPL) since it shares 58% homology to a 62 kDa soybean (Glycine max) protein (GmSBP) which has been described as a sucrose-binding and sucrose-transporting protein (SBP). VfSBPL as well as GmSBP are outgroup members of the large vicilin storage protein family. We were unable to measure any sucrose transport activity in mutant yeast cells expressing VfSBPL. During seed maturation in late (stage VII) cotyledons mRNA was localized by in situ hybridization in the storage parenchyma cells. At the subcellular level, immunolocalization studies proved VfSBPL accumulation in storage protein vacuoles. However, mRNA localization in stage VI cotyledons during the pre-storage/storage transition phase was untypical for a storage protein in that, in addition to storage parenchyma cell labelling, strong labelling was found over seed coat vascular strands and the embryo epidermal transfer cell layer reminiscent of sucrose transporter localization. The VfSBPL gene is composed of 6 exons and 5 introns with introns located at the same sites as in a Vicia faba 50 kDa vicilin storage protein gene. The time pattern of expression as revealed by northern blotting and the GUS accumulation pattern caused by a VfSBPL-promoter/GUS construct in transgenic tobacco seeds was similar to a seed protein gene with increasing expression during seed maturation. Our data suggest different functions of VfSBPL during seed development.  相似文献   

14.
Dense vesicles mediate the final step in the delivery of seedproteins to vacuoles in developing pumpkin (Cucurbita sp.) cotyledons.To explore the vesicle-mediated transport system that is targetedto vacuoles in plant cells, we isolated the dense vesicles andexamined then for the presence of guanine nucleotide-bindingproteins. GTP-binding proteins of 25 kDa and 27 kDa were detectedon the isolated vesicles. The 25-kDa protein had dithiothreitol-dependentGTP-binding activity, but binding of GTP by the 27-kDa proteinshowed no such dependence. Binding of [  相似文献   

15.
One of the major soybean allergens, Gly m Bd 28K, is suggested to be biosynthesized as a preproprotein form, which would be composed of a signal peptide, Gly m Bd 28K and the C-terminal peptide (the 23-kDa peptide). However, the 23-kDa peptide has never been characterized. In the present study, we prepared a monoclonal antibody (mAb) against a recombinant 23-kDa peptide expressed in Escherichia coli to detect the 23-kDa peptide in soybean. Several proteins were detected by immunoblotting with the mAb. All of the proteins were shown to have the identical N-terminal amino acid sequence, suggesting that the proteins correspond to the C-terminal part of the Gly m Bd 28K precursor. Furthermore, Gly m Bd 28K and the 23-kDa peptide were observed to come out at the 21st day after flowering and to locate in the crystalloid part of protein storage vacuoles in growing cotyledons. Some of the 23-kDa peptides were shown to be glycoproteins with an N-linked glycan moiety and exhibited the binding to IgE antibodies in the sera of patients sensitive to soybean. The binding of the peptides to IgE antibodies was suggested to be predominantly dependent on their glycan moiety. This study proves the occurrence of the 23-kDa peptide in soybean and that it is a new allergen.  相似文献   

16.
M. Duranti  F. Faoro  N. Harris 《Protoplasma》1991,161(2-3):104-110
Summary The distribution of two seed proteins, namely conglutin and a legumin-like globulin, in developing and mature seeds ofLupinus albus L. has been examined by immunocytochemistry and the concomitant modifications of their constituent polypeptides followed by SDS-PAGE. Both proteins were found within vacuolar protein bodies in various tissues of the cotyledons, although with some differences in the distribution patterns. The legumin-like protein was found to be deposited within the large storage parenchyma cells of the cotyledons in a manner similar to that reported for other storage proteins; little or no immunolabelling was associated with the cotyledonary epidermal and vascular parenchyma cells. In contrast conglutin was present in all cell types.A precursor of the legumin-like protein accumulated transiently in the developing cotyledon, but was subsequently modified by proteolytic cleavage. The onset of such modification was concomitant with a transition in the predominant vacuolar forms within the storage parenchyma cells. No precursor molecules of conglutin have been detected in this study, thus indicating that this protein is deposited in the protein bodies in its mature form.Abbreviations LM light microscopy - EM electron microscopy - DAF days after flowering - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - GAR goat antirabbit antiserum  相似文献   

17.
Maize seeds were used to identify the key embryo proteins involved in desiccation tolerance during development and germination. Immature maize embryos (28N) during development and mature embryos imbibed for 72 h (72HN) are desiccation sensitive. Mature maize embryos (52N) during development are desiccation tolerant. Thiobarbituric acid reactive substance and hydrogen peroxide contents decreased and increased with acquisition and loss of desiccation tolerance, respectively. A total of 111 protein spots changed significantly (1.5 fold increase/decrease) in desiccation-tolerant and -sensitive embryos before (28N, 52N and 72HN) and after (28D, 52D and 72HD) dehydration. Nine pre-dominantly proteins, 17.4 kDa Class I heat shock protein 3, late embryogenesis abundant protein EMB564, outer membrane protein, globulin 2, TPA:putative cystatin, NBS-LRR resistance-like protein RGC456, stress responsive protein, major allergen Bet v 1.01C and proteasome subunit alpha type 1, accumulated during embryo maturation, decreased during germination and increased in desiccation-tolerant embryos during desiccation. Two proteins, Rhd6-like 2 and low-molecular-weight heat shock protein precursor, showed the inverse pattern. We infer that these eleven proteins are involved in seed desiccation tolerance. We conclude that desiccation-tolerant embryos make more economical use of their resources to accumulate protective molecules and antioxidant systems to deal with maturation drying and desiccation treatment.  相似文献   

18.
Families of papain- and legumain-like cysteine proteinases (CPR) were found in Vicia seeds. cDNAs and antibodies were used to follow organ specificity and the developmental course of CPR-specific mRNAs and polypeptides. Four papain-like cysteine proteinases (CPR1, CPR2, proteinase A and CPR4) from vetch seeds (Vicia sativa L.) were analysed. CPR2 and its mRNA were already found in dry embryonic axes. CPR1 was only detected there during early germination. Both CPR1 and CPR2 strongly increased later during germination. In cotyledons, both CPR1 and CPR2 were only observed one to two days later than in the axis. Proteinase A was not found in axes. In cotyledons it could only be detected several days after seeds had germinated. CPR4 mRNA and polypeptide were already present in embryonic axes and cotyledons during seed maturation and decreased in both organs during germination. Purified CPR1, CPR2 and proteinase A exhibited partially different patterns of globulin degradation products in vitro. Although the cDNA-deduced amino acid sequence of the precursor of proteinase A has an N-terminal signal peptide, the enzyme was not found in vacuoles whereas the other papain-like CPRs showed vacuolar localization. Four different legumain-like cysteine proteinases (VsPB2, proteinase B, VnPB1 and VnPB2) of Vicia species were analysed. Proteinase B and VnPB1 mRNAs were detected in cotyledons and seedling organs after seeds had germinated. Proteinase B degraded globulins isolated from mature vetch seeds in vitro. VsPB2 and proteinase B are localized to protein bodies of maturing seeds and seedlings, respectively, of V. sativa. Like VsPB2 from V. sativa, also VnPB2 of V. narbonensis corresponds to vacuolar processing enzymes (VPE). Based on these results different functions in molecular maturation and mobilization of storage proteins could be attributed to the various members of the CPR families.  相似文献   

19.
cDNA cloning and differential gene expression of three catalases in pumpkin   总被引:5,自引:0,他引:5  
Three cDNA clones (cat1, cat2, cat3) for catalase (EC 1.11.1.6) were isolated from a cDNA library of pumpkin (Cucurbita sp.) cotyledons. In northern blotting using the cDNA-specific probe, the cat1 mRNA levels were high in seeds and early seedlings of pumpkin. The expression pattern of cat1 was similar to that of malate synthase, a characteristic enzyme of glyoxysomes. These data suggest that cat1 might encode a catalase associated with glyoxysomal functions. Furthermore, immunocytochemical analysis using cat1-specific anti-peptide antibody directly showed that cat1 encoding catalase is located in glyoxysomes. The cat2 mRNA was present at high levels in green cotyledons, mature leaf, stem and green hypocotyl of light-grown pumpkin plant, and correlated with chlorophyll content in the tissues. The tissue-specific expression of cat2 had a strong resemblance to that of glycolate oxidase, a characteristic enzyme of leaf peroxisomes. During germination of pumpkin seeds, cat2 mRNA levels increased in response to light, although the increase in cat2 mRNA by light was less than that of glycolate oxidase. cat3 mRNA was abundant in green cotyledons, etiolated cotyledons, green hypocotyl and root, but not in young leaf. cat3 mRNA expression was not dependent on light, but was constitutive in mature tissues. Interestingly, cat1 mRNA levels increased during senescence of pumpkin cotyledons, whereas cat2 and cat3 mRNAs disappeared during senescence, suggesting that cat1 encoding catalase may be involved in the senescence process. Thus, in pumpkin, three catalase genes are differentially regulated and may exhibit different functions.  相似文献   

20.
A novel vesicle, referred to as a precursor-accumulating (PAC) vesicle, mediates the transport of storage protein precursors to protein storage vacuoles in maturing pumpkin seeds. PV72, a type I integral membrane protein with three repeats of epidermal growth factor, was found on the membrane of the PAC vesicles. PV72 had an ability to bind to pro2S albumin, a storage protein precursor, in a Ca(2+)-dependent manner, via the C-terminal region of pro2S albumin, which was found to function as a vacuolar targeting signal. This implies that PV72 is a vacuolar sorting receptor of the storage protein. PV72 was specifically and transiently accumulated at the middle stage of seed maturation in association with the synthesis of storage proteins. Subcellular fractionation showed that PV72 was also accumulated in the microsomal fraction. A fusion protein consisting of GFP and the transmembrane domain and the cytosolic tail of PV72 was localized in Golgi complex. PV72 in the isolated PAC vesicles had a complex type of oligosaccharide, indicating that PV72 passed though the Golgi complex. These results suggest that PV72 is recycled between PAC vesicles and Golgi complex/post-Golgi compartments. PV72 appears to be responsible for recruiting pro2S albumin molecules from the Golgi complex to the PAC vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号