首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty four hours after mice were forced to swim for up to 10 minutes in cold water, there was a reduction in the ability of MK-801 to antagonize the electrical precipitation of tonic hindlimb extension. Milacemide, a lipophilic prodrug of glycine, restored the antiseizure efficacy of MK-801 to the same level observed in unstressed animals treated with milacemide and MK-801. Stimulation of the glycine-gated chloride ionophore subsequent to the liberation of free glycine could explain milacemide's pharmacologic action as an adjuvant to MK-801. Consistent with this interpretation, milacemide was able to potentiate the antiseizure effects of flurazepam, a benzodiazepine agonist, in stressed and unstressed mice and carbamazepine in unstressed animals.d-cycloserine, a partial glycine agonist with greater specificity for the strychnine-insensitive modulatory site on the NMDA receptor complex, was examined for its effect on MK-801's antiseizure efficacy. At a high dose (320 mg/kg),d-cycloserine alone had an anticonvulsant effect. Moreover, this dose ofd-cycloserine administered with MK-801 showed a significantly greater anticonvulsant efficacy than MK-801 alone. The data support the development of glycinergic interventions as adjunctive agents in the pharmacotherapy of seizure disorders.  相似文献   

2.
Digoxin (7.5 micrograms icv) induced 'pop-corn' type of convulsions and 100% mortality. The GABA-ergic agents produced varying degree of protection against digoxin-induced neurotoxicity. Diazepam (4 mg/kg) offered significant protection whereas pentobarbital (5 mg/kg) and baclofen (5 mg/kg) markedly reduced per cent mortality, but ethanol (2 g/kg), progabide (50 mg/kg) and muscimol (0.5 mg/kg) as well as GABA (50 mg/kg) could not offer significant protection in doses used. GABA-ergic agonists; GABA, baclofen, diazepam and pentobarbital when administered along with MK-801 (0.5 mg/kg) a non-competitive NMDA antagonist, a potentiation of anticonvulsant action of MK-801 was observed. MK-801 showed potent anticonvulsant profile in dose range (0.25-1 mg/kg) studied. A synergistic influence of Mg2+ and K+ ions on NMDA receptor antagonism was also observed. A role of GABA-ergic facilitation and NMDA antagonism as a potential anticonvulsant approach in digoxin-induced convulsions in rats has been suggested.  相似文献   

3.
The biochemical and pharmacological properties of [3H]MK-801 binding to the N-methyl-d-aspartate (NMDA) receptor-channel in homogenates of mouse, guinea pig and dog brain, dog cerebral cortex and rat spinal cord were determined using radioligand binding techniques. Specific [3H]MK-801 binding increased linearily with increasing tissue concentration and in general represented 80–93% of the total binding at 6–8 nM radioligand concentration. [3H]MK-801 interacted with brain and spinal homogenates with high affinity. The dissociation constants (K d ) for all tissues studied were similar ranging between 7.9 and 11.9 nM, whereas the maximum number of binding sites (Bmax) showed a wide, tissue-dependent range (0.1–6.75 pmol/mg protein). The rank order of tissue enrichment was found to be as follows: mouse brain>>dog cerebral cortex>>dog brain>> guinea pig brain>>rat spinal cord. Specific [3H]MK-801 binding in rodent and dog brain, dog cerebral cortex and rat spinal cord exhibited a similar pharmacological profile 9correlation coefficients=0.93–0.99). The rank order of potency of unlabelled compounds competing for [3H]MK-801 binding was: (+)MK-801>(–)MK-801>phencyclidine>(–)cyclazocine>>(+)cyclazocine ketamine>(+)N-allyl-N-normetazocine>(–)N-allyl-N-normetazocine>(–)pentazocine>(+)pentazocine. NMDA, Kainate, quisqualate and several other compounds failed to inhibit [3H]MK-801 binding at 100 M. In modulation studies conducted on extensively washed dog cortex membranes, Mg2+ ions stimulated [3H]MK-801 binding at 10 M-1 mM (EC50=91.5 M) and then inhibited the binding from 1 mM to 10 mM (IC50=3.1 mM). Glycine stimulated [3H]MK-801 binding at 30 nM-1 mM (EC50=256 nM). In contrast, Zn2+ ions inhibited the binding of [3H]MK-801 binding site exhibited similar pharmacological and biochemical properties. These data appear to suggest that the pharmacological profile of the NMDA-receptor-channel is species and tissue independent.  相似文献   

4.
N-methyl-D-aspartate(NMDA) glutamate receptors mediate critical components ofcardiorespiratory control in anesthetized animals. The role of NMDAreceptors in the ventilatory responses to peripheral and centralchemoreceptor stimulation was investigated in conscious, freelybehaving rats. Minute ventilation(E)responses to 10% O2, 5%CO2, and increasing intravenousdoses of sodium cyanide were measured in intact rats before and afterintravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume(VT) decreased while frequencyincreased, resulting in a modest reduction inE.Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. TheE responsesto hypercapnia were qualitatively similar in control and MK-801conditions, with slight reductions in respiratory drive (VT/TI)after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT wasunaffected. Sodium cyanide doses associated with significantEincreases were 5 and 50 µg/kg before and after MK-801,respectively. Thus 1-log shift to the right of individual dose-responsecurves occurred with MK-801. Selective carotid body denervation reducedE duringhypoxia by 70%, and residual hypoxic ventilatory responses wereabolished after MK-801. These findings suggest that, in conscious rats,carotid and other peripheral chemoreceptor-mediated hypoxic ventilatoryresponses are critically dependent on NMDA receptor activation and thatNMDA receptor mechanisms are only modestly involved during hypercapnia.

  相似文献   

5.
The effects of continuous infusion of NMDA receptor antagonist MK-801 on the modulation of NMDA receptor subunits NR1, NR2A, NR2B, and NR2C were investigated by using in situ hybridization study. Differential assembly of NMDA receptor subunits determines their functional characteristics. Continuous intracerebroventricular (i.c.v.) infusion with MK-801 (1 pmol/10 l/h) for 7 days resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels without producing stereotypic motor syndromes. The levels of NR1 mRNA were significantly increased (9-20%) in the cerebral cortex, striatum, septum, and CA1 of hippocampus in MK-801-infused rats. The levels of NR2A mRNA were significantly decreased (11-16%) in the CA3 and dentate gyrus of hippocampus in MK-801-infused rats. In contrast to NR2A, NR2B subunit mRNA levels were increased (10-14%) in the cerebral cortex, caudate putamen, and thalamus. However, no changes of NR2C subunits in cerebellar granule layer were observed. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased (12-25%) significantly in almost all brain regions except in the thalamus and cerebellum after 7 days infusion with MK-801. These results suggest that region-specific changes of NMDA receptor subunit mRNA and [3H]MK-801 binding are involved in the MK-801-infused adult rats.  相似文献   

6.
Liu C  Min S  Wei K  Liu D  Dong J  Luo J  Liu XB 《生理学报》2012,64(4):387-402
This study explored the effect of the excitatory amino acid receptor antagonists on the impairment of learning-memory and the hyperphosphorylation of Tau protein induced by electroconvulsive shock (ECT) in depressed rats, in order to provide experimental evidence for the study on neuropsychological mechanisms improving learning and memory impairment and the clinical intervention treatment. The analysis of variance of factorial design set up two intervention factors which were the electroconvulsive shock (two level: no disposition; a course of ECT) and the excitatory amino acid receptor antagonists (three level: iv saline; iv NMDA receptor antagonist MK-801; iv AMPA receptor antagonist DNQX). Forty-eight adult Wistar-Kyoto (WKY) rats (an animal model for depressive behavior) were randomly divided into six experimental groups (n = 8 in each group): saline (iv 2 mL saline through the tail veins of WKY rats ); MK-801 (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats) ; DNQX (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats ); saline + ECT (iv 2 mL saline through the tail veins of WKY rats and giving a course of ECT); MK-801 + ECT (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats and giving a course of ECT); DNQX + ECT (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats and giving a course of ECT). The Morris water maze test started within 1 day after the finish of the course of ECT to evaluate learning and memory. The hippocampus was removed from rats within 1 day after the finish of Morris water maze test. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. The contents of Tau protein which included Tau5 (total Tau protein), p-PHF1(Ser396/404), p-AT8(Ser199/202) and p-12E8(Ser262) in the hippocampus of rats were detected by immunohistochemistry staining (SP) and Western blot. The results showed that ECT and the glutamate ionic receptor blockers (NMDA receptor antagonist MK-801 and AMPA receptor antagonist DNQX) induced the impairment of learning and memory in depressed rats with extended evasive latency time and shortened space exploration time. And the two factors presented a subtractive effect. ECT significantly up-regulated the content of glutamate in the hippocampus of depressed rats which were not affected by the glutamate ionic receptor blockers. ECT and the glutamate ionic receptor blockers did not affect the total Tau protein in the hippocampus of rats. ECT up-regulated the hyperphosphorylation of Tau protein in the hippocampus of depressed rats, while the glutamate ionic receptor blockers down-regulated it, and combination of the two factors presented a subtractive effect. Our results indicate that ECT up-regulates the content of glutamate in the hippocampus of depressed rats, which up-regulates the hyperphosphorylation of Tau protein resulting in the impairment of learning and memory in depressed rats.  相似文献   

7.
Fredriksson A  Archer T 《Amino acids》2002,23(1-3):111-132
Summary.  Antiakinsic effects of the uncompetitive NMDA antagonists, memantine, amantadine and MK-801, and competitive antagonists, CGP 40116, alone or in co-administration with acute subthreshold dose of L-Dopa (5 mg/kg) in MPTP-treated mice, functional alterations induced by acute MK-801 in combinations with neuroleptic compounds or behavioural deficits following postnatal administration of MK-801 were investigated. Memantine and amantadine injected 60 min before the subthreshold dose of L-Dopa (5 mg/kg), induced antiakinesic actions in hypokinesic MPTP-treated mice. Concurrently, higher doses of memantine and MK-801 caused dyskinesic changes, reducing further rearing (10 and 30 mg/kg) and locomotor (30 mg/kg) behaviour of the MPTP mice; MK-801 elevated locomotion (0.1 mg/kg) but reduced rearing (0.3 mg/kg). In control, saline-treated mice, memantine (3, 10 and 30 mg/kg) and MK-801 (0.1 and 0.3 mg/kg) increased locomotor behaviour but decreased rearing behaviour. In rats, MK-801 induced marked increases in locomotor activity and disruptions of circular swim maze acquisition that were to greater or lesser extents blocked or potentiated by neuroleptic compounds: SCH 23390 (0.005 and 0.05 mg/kg) and clozapine (5.0 and 10.0 mg/kg) dose-dependently antagonised MK-801 (0.3 mg/kg) induced locomotor activity whereas raclopride (0.1 mg/kg) and haloperidol (0.1 mg/kg) attenuated it dose-specifically. Amperozide (0.5 mg/kg) attenuated the MK-801 effect but potentiated it at the 2.0 mg/kg dose. In the circular swim maze, raclopride (0.01 mg/kg) and SCH 23390 (0.05 mg/kg) improved the acquisitive performance of rats administered MK-801 (0.03 mg/kg) acutely whereas clozapine (10.0 mg/kg) and amperozide (2.0 mg/kg) deteriorated the performance of MK-801-treated rats. Postnatal administration of MK-801 (0.05 mg/kg, day 11 after birth) induced severe functional alterations in adult mice. At 70 days of age, MK-801 mice showed an initial hypoactivity followed by marked hyperactivity in the motor activity test chambers. These mice showed deficits in habituation, a nonassociative form of learning. Their hyperactivity in the test chambers was reversed by a low dose of d-amphetamine (0.25 mg/kg). Taken together, these findings display a wide range of acute/long-term functional alterations induced by NMDA antagonists, particularly MK-801, associated with animal models of brain disorders. Received July 9, 2001 Accepted August 6, 2001 Published online June 17, 2002  相似文献   

8.
In vitro studies show that docosahexaenoic acid (DHA) can be released from membrane phospholipid by Ca2+-independent phospholipase A2 (iPLA2), Ca2+-independent plasmalogen PLA2 or secretory PLA2 (sPLA2), but not by Ca2+-dependent cytosolic PLA2 (cPLA2), which selectively releases arachidonic acid (AA). Since glutamatergic NMDA (N-methyl-D-aspartate) receptor activation allows extracellular Ca2+ into cells, we hypothesized that brain DHA signaling would not be altered in rats given NMDA, to the extent that in vivo signaling was mediated by Ca2+-independent mechanisms. Isotonic saline, a subconvulsive dose of NMDA (25 mg/kg), MK-801, or MK-801 followed by NMDA was administered i.p. to unanesthetized rats. Radiolabeled DHA or AA was infused intravenously and their brain incorporation coefficients k*, measures of signaling, were imaged with quantitative autoradiography. NMDA or MK-801 compared with saline did not alter k* for DHA in any of 81 brain regions examined, whereas NMDA produced widespread and significant increments in k* for AA. In conclusion, in vivo brain DHA but not AA signaling via NMDA receptors is independent of extracellular Ca2+ and of cPLA2. DHA signaling may be mediated by iPLA2, plasmalogen PLA2, or other enzymes insensitive to low concentrations of Ca2+. Greater AA than DHA release during glutamate-induced excitotoxicity could cause brain cell damage.  相似文献   

9.
Mathé  A. A.  Gruber  S.  Jiménez  P. A.  Theodorsson  E.  Stenfors  C. 《Neurochemical research》1997,22(5):629-636
Rats were pretreated with 0.9% NaCl, or 0.1 or 1.0 mg/kg MK-801, an anticonvulsant and a psychotomimetic drug, and 60 minutes later given ECS or sham ECS. After six sessions the animals were sacrificed and neuropeptide Y (NPY-), neurokinin A (NKA-), and calcitonin gene-related peptide (CGRP-) like immunoreactivity (-LI) measured with radioimmunoassays. ECS increased NPY-LI in frontal cortex, striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex and hippocampus. MK-801 increased CGRP in a dose-response manner in frontal cortex, and NKA-LI in occipital cortex. Although the higher MK-801 dose reduced seizure duration by 50%, the ECS induced NPY-LI increase in striatum, occipital cortex and hippocampus, and NKA-LI in occipital cortex was not diminished. In contrast, there was a parallel decrease in seizures and NPY-LI and NKA-LI changes in frontal cortex and hippocampus, respectively. Investigation of neuropeptides in brain may contribute to understanding of the mechanisms of action of antide-pressive and antipsychotic treatments and of psychotomimetic drugs.  相似文献   

10.
In vivo studies have shown potent protection by volatile anesthetic agents against cerebral ischemic insults. Volatile agents have also been shown to antagonize glutamatergic neurotransmission at the N-methyl-D-aspartate (NMDA) receptor. This study examined the potential for halothane to reduce neuronal excitotoxic lesions caused by NMDA. Fetal rat cortical cell cultures were allowed to mature 13–16 d. Culture wells (n = 13–16) were treated with 0 mM – 3.96 mM halothane in the presence/absence of 30 M NMDA. Additional cultures were exposed to 30 M NMDA in the presence/absence of 10 M MK-801 or 10 ACEA 1021. Cellular lethality was assessed by measurement of lactate dehydrogenase (LDH) 24 hrs later. A maximal effect of halothane was observed at 0.70 mM (2.1 vol%) wherein a 36% reduction in NMDA-stimulated LDH release occurred relative to untreated controls. Both MK-801 and ACEA 1021 caused complete inhibition of NMDA-stimulated LDH release. These data confirm that halothane has modulatory effects at the NMDA receptor but potency of this drug is less than that of specific antagonists of either glutamate or glycine. These findings suggest that halothane protection in vivo can be partially explained by anti-excitotoxic properties although other mechanisms of action are probably also important.  相似文献   

11.
MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.  相似文献   

12.
It had been reported that exposure to extremely low-frequency magnetic field (ELFMF) induces anxiety in human and rodents. Anxiety mediates via the activation of N-methyl-d-aspartate (NMDA) receptor, whereas activation of γ-aminobutyric acid (GABA) receptor attenuates the same. Hence, the present study was carried out to understand the contribution of NMDA and/or GABA receptors modulation in ELFMF-induced anxiety for which Swiss albino mice were exposed to ELFMF (50?Hz, 10?G) by subjecting them to Helmholtz coils. The exposure was for 8?h/day for 7, 30, 60, 90 and 120 days. Anxiety level was assessed in elevated plus maze, open field test and social interaction test, on 7th, 30th, 60th, 90th and 120th exposure day, respectively. Moreover, the role of GABA and glutamate in ELFMF-induced anxiety was assessed by treating mice with muscimol [0.25?mg/kg intraperitoneally (i.p.)], bicuculline (1.0?mg/kg i.p.), NMDA (15?mg/kg i.p.) and MK-801 (0.03?mg/kg i.p.), as a GABAA and NMDA receptor agonist and antagonist, respectively. Glutamate receptor agonist exacerbated while inhibitor attenuated the ELFMF-induced anxiety. In addition, levels of GABA and glutamate were determined in regions of the brain viz, cortex, striatum, hippocampus and hypothalamus. Experiments demonstrated significant elevation of GABA and glutamate levels in the hippocampus and hypothalamus. However, GABA receptor modulators did not produce significant effect on ELFMF-induced anxiety and elevated levels of GABA at tested dose. Together, these findings suggest that ELFMF significantly induced anxiety behavior, and indicated the involvement of NMDA receptor in its effect.  相似文献   

13.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10–2 M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. Cortical rCBF was determined using 14C-iodoantipyrine and regional O2 extraction was measured microspectrophotometrically. Cerebral O2 consumption increased 77% after glutamate (contralateral cortex: 9.0 ± 1.1 ml O2/min/100 g, glutamate treated cortex: 15.9 ± 3.9), while a 46% increase was observed with the same concentration of NMDA (contralateral cortex: 9.8 ± 2.0, NMDA treated cortex: 14.3 ± 5.5). After MK-801, the O2 consumption decreased to 37% of the control value (control cortex: 7.0 ± 1.3, MK-801 treated cortex: 2.6 ± 3.9). MK-801 significantly decreased cerebral O2 extraction from 7.1 ± 1.3 ml O2/100 ml (control cortex) to 5.3 ± 0.6 (MK-801 treated cortex). However, there was no significant difference in cerebral O2 extraction between treated and contralateral cortex in either the glutamate or NMDA groups. The increase in O2 consumption caused by glutamate or NMDA was coupled with increased rCBF. Glutamate increased rCBF from 95 ± 5 ml/min/100 g (contralateral cortex) to 165 ± 31 (treated cortex), while NMDA increased rCBF from 114 ± 12 (contralateral cortex) to 178 ± 60 (treated cortex). MK-801 decreased O2 consumption with a lesser decrease of rCBF. The rCBF was 48 ± 9 in the MK-801 treated cortex and 99 ± 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.  相似文献   

14.
Oh  Seikwan  Hoshi  Katsuji  Ho  I. K. 《Neurochemical research》1997,22(7):767-774
Effects of continuous pentobarbital administration on binding characteristics of [3H]MK-801 in the rat brain were examined by autoradiography. Animals were rendered tolerant to pentobarbital using i.c.v. infusion of pentobarbital (300g/10l/hr for 7 days) by osmotic minipumps and dependent by abrupt withdrawal from pentobarbital. The levels of [3H]MK-801 binding were elevated in rats 24-hr after withdrawal from pentobarbital while there were no changes except in septum and anterior ventral nuclei in tolerant rats. For assessing the role of NMDA receptor in barbiturate action, an NMDA receptor antagonist (MK-801, 2.7 femto g/10l/hr) was co-infused with pentobarbital. The pentobarbital-infused group had a shorter duration of pentobarbital-induced loss of righting reflex (sleeping time) than that of the control group, and MK-801 alone did not affect the righting reflex. However, co-infusion of MK-801 blocked hyperthermia, and prolonged the onset of convulsions induced by t-butylbicyclophosphorothionate (TBPS) in pentobarbital withdrawal rats. In addition, elevated [35S]TBPS binding was significantly attenuated by co-infusion with MK-801. These results suggest the involvement of NMDA receptor up-regulation in pentobarbital withdrawal and that the development of dependence can be attenuated by the treatment of subtoxic dose of MK-801.  相似文献   

15.
目的:探讨亚慢性地卓西平(MK-801)诱导的精神分裂样小鼠模型中前额叶和海马脑区巨噬细胞迁移抑制因子(Macrophage migration inhibitory factor,MIF)蛋白表达的变化。方法:将24只7周龄小鼠随机分为对照组、MK-801组和MK-801+奥氮平(olanzapine,olz)组(n=8),三组小鼠分别接受0.9%生理盐水、MK-801(0.6 mg/kg)和MK-801(0.6 mg/kg)+奥氮平(2.5 mg/kg)给药,持续4周。小鼠行为学通过旷场试验、社交实验进行评价,免疫印迹法检测小鼠前额叶和海马组织中MIF蛋白的表达。结果:MK-801处理后,小鼠活动量增加,社交功能受损,且都能被抗精神分裂症药物奥氮平显著改善。MK-801组小鼠前额叶皮层中MIF蛋白表达与对照组比较无明显统计学差异(P0.05),而海马脑区中MIF蛋白表达较对照组明显升高(P0.05);MK-801+奥氮平组小鼠前额叶皮层中MIF蛋白表达较MK-801组无显著变化,而海马脑区中MIF蛋白表达较MK-801组明显降低(P0.05)。结论:亚慢性给予MK-801诱导的精神分裂样小鼠海马脑区中MIF蛋白水平升高,提示MIF蛋白可能参与MK-801诱导的精神分裂样行为。  相似文献   

16.
The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.  相似文献   

17.
Neocortex and hippocampus play important role in motor activity, neuronal plasticity and learning and memory mechanisms. Electroencephalographic (EEG) activity of neocortex and hippocampus of rat following NMDA-receptor agonist, N-methyl-D-aspartate (NMDA), 0.25-2 nmol in 10 microliters, ICV and noncompetitive NMDA-receptor antagonists, MK 801 (0.025-0.1 mg/kg, ip) and ketamine (10-50 mg/kg, ip) at OH, 1/2H, 4H, 8H and 24H was recorded. The electrodes were implanted stereotaxically in hippocampus and neocortex respectively. NMDA (0.25 and 1 nmol) showed longer lasting decrease in amplitude in hippocampus and in frequency in cortical neurons while 2 nmol produced epileptogenic neurotoxicity. Opposite effect i.e. increase in amplitude in both, hippocampus and neocortex was observed with MK 801 and ketamine and these agents also showed longer lasting influence. Administration of MK 801 (0.05 mg/kg) and ketamine (50 mg/kg) prior to NMDA 2 nmol protected 40% animals from NMDA-induced neurotoxicity and blockade of NMDA-induced long term influence. The EEG effect of NMDA agonist and NMDA-induced neurotoxicity at higher dose and its modification by NMDA-antagonist, MK 801 and ketamine suggest that beside NMDA agonists (NMDA), its antagonists may, also affect long lasting changes in hippocampus and cortex. These antagonists reverse NMDA-mediated long term influence in these brain areas.  相似文献   

18.
Abstract: Susceptibility to NMDA neurotoxicity peaks in the early postnatal period in rats. Although indirect evidence suggests that interleukin-1β is a mediator of NMDA neurotoxicity in perinatal rats, direct confirmation of NMDA-induced interleukin-1β production in the brain has not been reported previously. The primary goal of this study was to determine if intracerebral injection of a neurotoxic dose of NMDA stimulates interleukin-1β production acutely. We used a rat-specific interleukin-1β ELISA to quantify brain tissue homogenate interleukin-1β content, and an immunocytochemical assay with a monoclonal anti-rat interleukin-1β antibody to visualize its distribution. NMDA (10 nmol) was injected stereotaxically into 7-day-old rats, using coordinates that targeted the striatum and overlying dorsal hippocampus. Interleukin-1β concentrations were measured in samples from the injected and contralateral cerebral hemispheres 0–12 h later; in addition, the impact of treatment with the noncompetitive NMDA antagonist MK-801 on interleukin-1β production was assessed. We found marked increases in tissue content of interleukin-1β in the lesioned hemisphere; values peaked at 6 h post injection. Treatment with MK-801 (1 mg/kg) blocked NMDA-induced increases in interleukin-1β. Preliminary immunocytochemical analysis demonstrated high concentrations of interleukin-1β-immunoreactive cells in the lesioned hippocampus, and concurrent increases in interleukin-1β immunoreactivity diffusely in the ependyma at 6 h after NMDA administration. Our data provide the first direct evidence that NMDA-induced excitotoxic injury stimulates interleukin-1β production in vivo.  相似文献   

19.
1. Protooncogene c-fos mRNA levels were determined in the rat cerebral cortex, hippocampus, and cerebellum after exposure to a combined forced swimming and confinement stress. The stress resulted in an increase in c-fos mRNA levels in all three brain areas.2. In an effort to elucidate the neurotransmitter systems involved in this stress-induced increase, animals were injected, prior to exposure to the stress, with either diazepam, MK-801, or propranolol.3. In both the cerebral cortex and the hippocampus the stress-induced increase in c-fos mRNA was inhibited by MK-801, suggesting that it is mediated via NMDA receptors. In the hippocampus, propranolol had a similar effect, indicating that -adrenergic receptors are also involved in the stress-induced increase in c-fos mRNA.4. On the other hand, the increase in c-fos mRNA produced by the stress of the injection was inhibited in the cerebral cortex by diazepam or propranolol and in the hippocampus only by diazepam. Furthermore, administration of MK-801 resulted in an increase in c-fos mRNA in the hippocampus of the nonstressed animals. In the cerebellum no one of the three drugs employed affected c-fos mRNA levels in either stressed or nonstressed animals.5. Our results thus show that various forms of stress activate, in different brain areas, neurons with either NMDA, -adrenergic, and/or GABA-A receptors.  相似文献   

20.
S K Kulkarni  M K Ticku 《Life sciences》1989,44(18):1317-1323
The interaction between GABAergic (barbiturates, diazepam, ethanol) and other (phenytoin) anticonvulsants and the N-methyl-D-aspartate (NMDA) receptor antagonist MK 801 in protecting rats against maximal electroshock (MES)- and picrotoxin-induced (10 mg/kg) convulsions was studied. MK 801 (0.1 to 5 mg/kg) showed anticonvulsant responses against MES-induced convulsions in a dose dependent manner, higher doses showing severe muscle relaxation, motor incoordination, and anticonvulsant action. It also produced stereotypic head movement, circling behavior, and affected locomotion. When subanticonvulsant dose (1 mg/kg) of MK 801 was simultaneously administered with subprotective doses of GABAergic anticonvulsants, it significantly potentiated the effects of barbiturates, as compared to other agents. At 1 mg/kg, MK 801 did not offer protection against tonic convulsions though protected (100%) the animals from mortality due to picrotoxin-induced convulsions. It potentiated the effect of a subprotective dose (5 mg/kg) of pentobarbital, but not of diazepam, against tonic convulsions. However, no mortality was observed in either group. The antiglutamate action of barbiturates, particularly that of pentobarbital, may contribute to the observed potentiating response between pentobarbital and MK 801.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号