首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Affinity labeling of [125I]NPY to the bovine hippocampal NPY receptor has revealed a 50 kDa specific binding protein, the Y2 receptor. Cysteamine (10 microM - 10 mM) specifically enhanced NPY specific labeling of the Y2 receptor without affecting cross-linking efficiency. Several structurally related agents, including reduced glutathione, cysteine, beta-mercaptoethanol and ethanolamine, were without effect on receptor binding. The enhancement of binding by cysteamine could be reversed by washing the membranes. These studies suggest that cysteamine may change the conformation of the NPY Y2 receptor and increase its binding activity.  相似文献   

2.
W Li  R G MacDonald  T D Hexum 《Life sciences》1992,50(10):695-703
[125I]NPY bound to a single class of saturable binding sites on bovine hippocampus membranes with a KD of 0.1 mM and Bmax of 165 fmol/mg of protein. The rank order of potency of NPY fragments and other structurally related peptides to inhibit [125I]NPY binding was: PYY greater than or equal to NPY much greater than BPP greater than or equal to APP and NPY greater than NPY-(13-36) greater than NPY-(18-36) greater than or equal to NPY-(20-36) much greater than NPY-(26-36) greater than NPY-(free acid). The identity of the NPY binding site was investigated by affinity labeling. Gel electrophoresis followed by autoradiography revealed a band with a mol mass of 50 kDa. Unlabeled NPY or PYY, but not BPP, HPP and APP, inhibited labeling of [125I]NPY to the 50 kDa protein band. Moreover, labeling was inhibited by NPY greater than NPY-(18-36) greater than or equal to NPY-(13-36) greater than or equal to NPY-(20-36) greater than NPY-(26-36) greater than NPY-(free acid). The binding of [125I]NPY and the intensity of the cross-linked band were reduced in parallel by increasing concentrations of unlabeled NPY (IC50 = 0.7 nM and 0.6 mM, respectively). These studies demonstrate that bovine hippocampal membranes contain a 50 kDa [125I]NPY binding site that has the ligand specificity characteristic of the Y2 receptor subtype.  相似文献   

3.
Neuropeptide Y (NPY) is an important neuropeptide in both central and peripheral neurones whereas peptide YY (PYY) is a gut hormone present in endocrine cells in the lower bowel. Both peptides interact with multiple binding sites that have been further classified into Y1 and Y2 receptors. We have solubilized native Y2 receptors both from basolateral membranes of proximal convoluted tubules from rabbit kidney and from rat hippocampal membranes. Solubilization of functional Y2 receptors was obtained with both 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and digitonin and resulted in each case in a single class of high affinity binding sites. The soluble receptor retained the binding specificity for different peptides and long C-terminal fragments of NPY exhibited by membrane preparations. Gel filtration of solubilized receptors resulted in a single peak of specific PYY binding activity corresponding to Mr = 350,000 whereas affinity labeling revealed a major band of Mr = 60,000. Since this binding activity was inhibited by guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) the Y2 receptor is probably solubilized as a receptor complex containing a G-protein along with the ligand binding protein. Y2 receptor binding sites from kidney tubular membranes were purified to homogeneity by a three-step procedure employing Mono S cation-exchange adsorption, affinity chromatography on wheat germ lectin-agarose beads, and affinity chromatography on NPY-Affi-Gel. Electrophoresis and silver staining of the final receptor preparation revealed a single protein with Mr = 60,000 whereas gel filtration showed a single peak at approximately Mr = 60,000. The purified protein can be affinity labeled with [125I-Tyr36]PYY, indicating that the Mr = 60,000 protein contains the ligand binding site of the Y2 receptor, and this binding is not affected by GTP gamma S. Scatchard transformation of binding data for the purified Y2 receptors was compatible with a single class of binding sites with Kd = 76 pM. The purified Y2 receptors retain their binding properties with regard to affinity and specificity for different members of the pancreatic polypeptide-fold peptide family. The specific activity of purified Y2 receptors was calculated to approximately 14.7 nmol of ligand binding/mg of receptor protein, which is consistent with the theoretical value (16.6 nmol/mg) for a pure Mr = 60,000 protein binding one PYY molecule. Purification to homogeneity thus reveals the Y2 receptor as an Mr = 60,000 glycoprotein.  相似文献   

4.
Bovine chromaffin cells have been used in a variety of studies designed to reveal different aspects of neuropeptide Y (NPY) action. Pharmacological data have defined five NPY receptor subtypes, only one of which (Y3) has not been cloned. Some studies with bovine chromaffin cells have concluded that the effects of NPY on this cell type are mediated by the Y3 subtype. Previous work from our laboratory demonstrates that a Y1 subtype mediates the effect of NPY in this tissue. In the current studies we provide further evidence for the existence of the Y1 subtype in bovine chromaffin cells. BIBP3226, the selective Y1 antagonist, potently displaces [125I]NPY from its binding site IC50 = 1.91 x 10(-9) M. Moreover, [125I]BIBP3226 binds to bovine chromaffin cell membranes with high affinity (IC50 = 5.9 x 10(-8) M). Examination of BIBP3226 antagonism of NPY inhibition of forskolin stimulated cyclic AMP accumulation reveals that it is a competitive antagonist with a K(B) similar to the IC50 for [125I]BIBP3226 binding. Northern blot analysis using a porcine cDNA clone for the Y1 subtype demonstrates a 3.5-kb mRNA species in chromaffin cells. These data identify the bovine chromaffin cell NPY receptor as a Y1 subtype.  相似文献   

5.
In conditions precluding activation of G proteins, the binding of agonists to dimers of the neuropeptide Y (NPY) Y2 receptor shows two components of similar size, but differing in affinity. The dimers of all NPY receptors are solubilized as approximately 180-kDa complexes containing one G protein alpha beta gamma trimer. These heteropentamers are stable to excess agonists, chelators, and alkylators. However, dispersion in the weak surfactant cholate releases approximately 300-kDa complexes. These findings indicate that both protomers in the Y2 dimer are associated with G protein heterotrimers, but the extent of interaction depends on affinity for the agonist peptide. The G protein in contact with the first-liganded, higher-affinity protomer should have a stronger interaction with the receptor and a larger probability of activation.  相似文献   

6.
In conditions precluding activation of G proteins, the binding of agonists to dimers of the neuropeptide Y (NPY) Y2 receptor shows two components of similar size, but differing in affinity. The dimers of all NPY receptors are solubilized as ~ 180-kDa complexes containing one G protein α β γ trimer. These heteropentamers are stable to excess agonists, chelators, and alkylators. However, dispersion in the weak surfactant cholate releases ~ 300-kDa complexes. These findings indicate that both protomers in the Y2 dimer are associated with G protein heterotrimers, but the extent of interaction depends on affinity for the agonist peptide. The G protein in contact with the first-liganded, higher-affinity protomer should have a stronger interaction with the receptor and a larger probability of activation.  相似文献   

7.
Neuropeptide Y (NPY) binding sites in rat cardiac ventricular membranes have been characterized in detail. 125I-NPY bound to the membranes with high affinity. Binding was saturable, reversible and specific, and depended on time, pH and temperature. Analysis of the binding data obtained under optimal conditions, 2 hr, 18 degrees C and at pH 7.5, revealed the presence of low and high affinity binding sites. The high affinity binding sites had an apparent dissociation constant (Kd) of 0.38 nM and a binding capacity (Bmax) of 7.13 fmol/mg protein. The apparent Kd and Bmax for low affinity binding sites were 22.34 nM and 261.25 fmol/mg protein, respectively. Peptides unrelated to NPY did not compete with 125I-NPY for the binding sites even at 1 microM concentrations, whereas homologous peptides, peptide YY (PYY) and pancreatic polypeptide (PP), and NPY(13-36) inhibited 125I-NPY binding but with lower potency compared to NPY. 125I-NPY binding was sensitive to the nonhydrolyzable GTP analog, Gpp(NH)p, suggesting that the NPY receptor is coupled to the adenylate cyclase system. The ventricular membrane receptor characterized in this study may play an important role in mediating the physiological effects of NPY in the heart.  相似文献   

8.
Neuropeptide Y (NPY) is a 36-amino acid neuropeptide that exerts its activity by at least five different receptor subtypes that belong to the family of G-protein-coupled receptors. We isolated an aptamer directed against NPY from a nuclease-resistant RNA library. Mapping experiments with N-terminally, C-terminally, and centrally truncated analogues of NPY revealed that the aptamer recognizes the C terminus of NPY. Individual replacement of the four arginine residues at positions 19, 25, 33, and 35 by l-alanine showed that arginine 33 is essential for binding. The aptamer does not recognize pancreatic polypeptide, a highly homologous Y4 receptor-specific peptide of the gut. Furthermore, the affinity of the aptamer to the Y5 receptor-selective agonist [Ala(31),Aib(32)]NPY and the Y1/Y5 receptor-binding peptide [Leu(31),Pro(34)]NPY was considerably reduced, whereas Y2 receptor-specific NPY mutants were bound well by the aptamer. Accordingly, the NPY epitope was recognized by the Y2 receptor, and the aptamer was highly similar. This Y2 receptor mimicking effect was further confirmed by competition binding studies. Whereas the aptamer competed with the Y2 receptor for binding of [(3)H]NPY with high affinity, a low affinity displacement of [(3)H]NPY was observed at the Y1 and the Y5 receptors. Consequently, competition at the Y2 receptor occurred with a considerably lower K(i) value compared with the Y1 and Y5 receptors. These results indicate that the aptamer mimics the binding of NPY to the Y2 receptor more closely than to the Y1 and Y5 receptors.  相似文献   

9.
The low-molecular-mass, cyclic analog of neuropeptide Y, [Ahx5-24, gamma-Glu2-epsilon-Lys30] NPY (YESK-Ahx-RHYINKITRQRY; Ahx, 6-aminohexanoic acid; NPY, neuropeptide Y), was synthesized and investigated for receptor binding, inhibition of forskolin-stimulated cAMP accumulation, inhibition of electrically stimulated rat vas deferens contractions and ability to increase blood pressure. Like the linear peptide [Ahx5-24] NPY (YPSK-Ahx-RHYINLITRQRY), the more rigid, cyclic analog showed good correlation between receptor binding to rabbit kidney membranes and biological activity in the vas deferens assay. Binding of this peptide to a new Y2-receptor-expressing cell line was slightly reduced, compared to the linear peptide [Ahx5-24] NPY, however inhibition of cAMP accumulation was even more efficient. Unlike the linear peptide [Ahx5-24] NPY, the cyclic analog did not induce a blood pressure increase in rats. Reduced binding to Y1 receptor-expressing SK-N-MC cells, as well as the loss of capability of signal transduction, suggest that only Y2-mediated activity is preserved after cyclization. The selectivity of the cyclic compound for Y2 subtypes of NPY receptors with respect to inhibition of cAMP accumulation is more than fortyfold increased, as compared to the linear NPY-(13-36) peptide, which has been used to determine Y2 selectivity so far.  相似文献   

10.
Neuropeptide Y (NPY), a neurotransmitter contained within intrinsic nerves of the small intestine, inhibits secretion when added to the serosal side of intestinal mucosa mounted in Ussing chambers. Using NPY radiolabeled with IODO-GEN, lactoperoxidase, or the Bolton-Hunter reagent, we have localized high affinity NPY receptors to the serosal laterobasal membranes of the rat intestinal epithelial cell, isolated according to a recently described protocol that minimizes contamination with endoplasmic reticulum, Golgi, and brush-border membranes. In addition, certain species of radiolabeled NPY, including those labeled with IODO-GEN at the tyrosine residue 36, also demonstrated an ability to bind to brush-border membranes. These receptors were specific for NPY since the homologous peptides, pancreatic polypeptide and peptide YY, were less efficient than NPY in inhibiting the membrane binding of radiolabeled NPY. By cross-linking NPY to its receptor with either disuccinimidyl suberate or dithiobis(succinimidyl propionate) and analyzing the resulting complexes on sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by radioautography, we identified two NPY receptor species with molecular sizes of 52-59 kDa and 37-39 kDa. The 37-39-kDa species further possesses a disulfide bond which may attach it to a separate approximately 5-kDa subunit, as evidenced by retarded migration in the absence of the reducing agent dithiothreitol. The intestinal NPY receptor is slightly smaller than the rat brain receptor previously characterized using similar techniques. The localization of NPY receptors on laterobasal membranes is consistent with previous anatomic and physiologic findings, and their identification by cross-linking techniques will constitute the basis for detailed characterization.  相似文献   

11.
Two types of binding sites have previously been described for neuropeptide Y (NPY), called Y1 and Y2 receptors. The intracellular events following Y1 receptor activation was studied in the human neuroblastoma cell line SK-N-MC. Both NPY and the specific Y1 receptor ligand, [Leu31,Pro34]-NPY, caused a rapid and transient increase in the concentration of free calcium in the cytoplasm as measured by the fluorescent probe, Fura-2. The effect of both peptides was independent of extracellular calcium as addition of EGTA or manganese neither changed the size nor the shape of the calcium response. The calcium response to NPY was abolished by pretreatment with thapsigargin, which can selectively deplete a calcium store in the endoplasmic reticulum. Y1 receptor stimulation, by both NPY and [Leu31,Pro34]NPY, also inhibited the forskolin-stimulated cAMP production with an EC50 of 3.5 nM. There was a close relation between the receptor binding and the cellular effects as half-maximal displacement of [125I-Tyr36]monoiodoNPY from the receptor was obtained with 2.1 nM NPY. The Y2-specific ligand NPY(16-36)peptide had no effect on either intracellular calcium or cAMP levels in the SK-N-MC cells. It is concluded that Y1 receptor stimulation is associated with both mobilization of intracellular calcium and inhibition of adenylate cyclase activity.  相似文献   

12.
Subtypes of the neuropeptide Y (NPY) receptor in the rat brain were identified by the use of the selective Y-1 analog, [Leu34-Pro34] NPY. In rat brain homogenate binding studies, [Leu31-Pro34] NPY was found to produce a partial inhibition of 100 pM 125I-labeled peptide YY (PYY) binding with a plateau at 50-1000 nM [Leu31-Pro34] NPY resulting in a 70% inhibition of binding. The C-terminal fragment NPY 13-36, a putative Y-2 agonist, exhibited very little selectivity in rat brain homogenates. Scatchard analysis of 125I-labeled PYY binding to rat brain homogenate yielded biphasic plots with Kd values of 40 and 610 pM. Inclusion of 100 nM [Leu31-Pro34] NPY was found to eliminate the low affinity component of 125I-labeled PYY binding leaving a single, high affinity binding site with a Kd of 68 pM. In autoradiographic studies, displacement curves indicated that [Leu31-Pro34] NPY completely inhibited binding in the cerebral cortex with little effect on the binding in the hypothalamus. On the other hand NPY 13-36 inhibited binding in the hypothalamus at low concentrations but required higher concentrations to inhibit binding in the cerebral cortex. Other brain regions such as the hippocampus, appeared to contain both subtypes. Subsequent to these studies, a quantitative autoradiographic map was conducted using 50-100 pM 125I-labeled PYY in the presence and absence of [Leu31-Pro34] NPY which produced a selective displacement of binding in certain distinct brain regions. These areas included the cerebral cortex, certain thalamic nuclei and brainstem while ligand binding was retained in other brain regions including the zona lateralis of the substantia nigra, lateral septum, nucleus of the solitary tract and the hippocampus. Numerous brain regions appeared to contain both receptor subtypes. Therefore, the Y-1 and Y-2 receptor subtypes exhibited a somewhat distinct distribution in the brain. In addition, 125I-labeled PYY appears to label the Y-2 receptor with relatively higher affinity when compared to the Y-1 receptor.  相似文献   

13.
Plasma membrane suspensions of Ehrlich ascites cells solubilized with cholic acid were used to study the effects of sulfhydryl reagents on Na(+)-dependent amino acid transport. These suspensions were treated with the sulfhydryl binding agents p-chloromercuribenzenesulfonic acid or N-ethylmaleimide prior to reconstitution for the assay of transport activity. The proteoliposomes formed from dissolved membranes treated with p-chloromercuribenzenesulfonic acid showed no Na(+)-dependent alpha-aminoisobutyric acid transport, while N-ethylmaleimide pretreated membranes retained approximately 90% of the original activity. To avoid interference by the N-ethylmaleimide component, further studies were carried out with membranes pretreated with 200 microM N-ethylmaleimide prior to p-chloromercuribenzenesulfonic acid treatment. A concentration of 25 microM p-chloromercuribenzenesulfonic acid inhibited Na(+)-dependent alpha-aminoisobutyric acid transport by 50%. The degree of inhibition was dramatically reduced in the presence of substrates specific for the A transport system. Using an inhibition index to address the efficacy of inhibition in presence and absence of substrates, it could be shown that an index of 1.0 in presence of p-chloromercuribenzenesulfonic acid was reduced to 0.84 with (methylamino)isobutyric acid alone and 0.05 in the presence of 100 mM Na+ and 5 mM (methylamino)isobutyric acid. Na+ alone offered no protection. The results show that sulfhydryl group(s) on the amino acid carrier may be directly involved in substrate binding and that substrate binding sites are functional in the disaggregated membrane state. Furthermore, Na+ directly affects (methylamino)isobutyrate binding, since the degree of protection by the amino acid analogue against p-chloromercuribenzenesulfonic acid inhibition was influenced by the presence of Na+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
NPY is the most potent orexigenic agent known to man, with NPY Y1 and NPY Y5 being the receptor subtypes that are most likely responsible for centrally-mediated NPY-induced feeding responses. Based on the aforementioned, novel hydrazide derivatives were prepared for the purpose of searching new NPY Y5 receptor antagonists. Many of the compounds exhibited nanomolar binding affinity for this receptor, affording trans-N-(4-[N'-(3,4-dichlorophenyl)hydrazinocarbonyl]cyclohexylmethyl)-4-fluorobenzenesulfonamide, which showed the best activity (IC(50)=0.43nM).  相似文献   

15.
Neuropeptide Y (NPY) is known to induce robust feeding through the action of NPY receptors in the hypothalamus. Among the subtypes of NPY receptors, Y(1) receptors may play a key role in feeding regulation. In the present study, we demonstrated that a novel Y(1) antagonist, J-104870, shows high selectivity and potency for the Y(1) receptor with an anorexigenic effect on NPY-mediated feeding. J-104870 displaced [(125)I]peptide YY (PYY) binding to cloned human and rat Y(1) receptors with K(i) values of 0.29 and 0.54 nM, respectively, and inhibited the NPY (10 nM)-induced increase in intracellular calcium levels (IC(50) = 3.2 nM) in cells expressing human Y(1) receptors. In contrast, J-104870 showed low affinities for human Y(2) (K(i) > 10 microM), Y(4) (K(i) > 10 microM), and Y(5) receptors (K(i) = 6 microM). In rat hypothalamic membranes, J-104870 also completely displaced the binding of [(125)I]1229U91, which is known to bind to the typical Y(1) receptor, with a high affinity (K(i) = 2.0 nM). Intracerebroventricular (ICV) injection of J-104870 (200 microg) significantly suppressed NPY (5 microg)-induced feeding in satiated Sprague-Dawley rats by 74%. Furthermore, ICV and oral administration of J-104870 (200 microg and 100 mg/kg, respectively) significantly suppressed spontaneous food intake in Zucker fatty rats. These findings suggested that J-104870 is a selective and potent nonpeptide Y(1) antagonist with oral bioavailability and brain penetrability. In addition, the anorexigenic effect of J-104870 clearly revealed the participation of the Y(1) receptor in NPY-mediated feeding regulation. The potent and orally active Y(1) antagonist J-104970 is a useful tool for elucidating the physiological roles of NPY in obesity.  相似文献   

16.
17.
Optimization of HTS hit 1 for NPY Y5 receptor binding affinity, CYP450 inhibition, solubility and metabolic stability led to the identification of some orally available oxygen-linker derivatives for in vivo study. Among them, derivative 4i inhibited food intake induced by the NPY Y5 selective agonist, and chronic oral administration of 4i in DIO mice caused a dose-dependent reduction of body weight gain.  相似文献   

18.
The roles of sulfhydryl and disulfide groups in the specific binding of synthetic cannabinoid CP-55,940 to the cannabinoid receptor in membrane preparations from the rat cerebral cortex have been examined. Various sulfhydryl blocking reagents including p-chloromercuribenzoic acid (p-CMB), N-ethylmaleimide (NEM), o-iodosobenzoic acid (o-ISB), and methyl methanethiosulfonate (MMTS) inhibited the specific binding of [3H]CP-55,940 to the cannabinoid receptor in a dose-dependent manner. About 80–95% inhibition was obtained at a 0.1 mM concentration of these reagents. Scatchard analysis of saturation experiments indicates that most of these sulfhydryl modifying reagents reduce both the binding affinity (Kd) and capacity (Bmax). On the other hand, DL-dithiothreitol (DTT), a disulfide reducing agent, also irreversibly inhibited the specific binding of [3H]CP-55,940 to the receptor and about 50% inhibition was obtained at a 5 mM concentration. Furthermore, 5mM DTT was abelt to dissociate 50% of the bound ligand from the ligand-receptor complex. The marked inhibition of [3H]CP-55,940 binding by sulfhydryl reagents suggests that at least one free sulfhydryl group is essential to the binding of the ligand to the receptor. In addition, the inhibition of the binding by DTT implies that besides free sulfhydryl group(s), the integrity of a disulfide bridge is also important for [3H]CP-55,940 binding to the cannabinoid receptor.  相似文献   

19.
Neuropeptide Y (NPY), a hexatriacontapeptide amide, is present in high concentrations in the mammalian heart. Specific receptors of NPY in rat cardiac ventricular membranes have been characterized recently in our laboratory. Structure-activity studies with selected partial sequences of NPY revealed that NPY(18-36) inhibited the binding of 125I-NPY to rat cardiac ventricular membranes but had no effect on the cardiac adenylate cyclase activity. NPY, as previously reported, inhibited the cardiac adenylate cyclase activity. These observations suggested that NPY (18-36) may be an antagonist of NPY in cardiac membranes. Consistent with this observation, the presence of NPY (18-36) (1 microM) shifted the inhibitory adenylate cyclase activity dose-response curve of NPY to the right in a parallel fashion. Furthermore, NPY(18-36) (1 microM) completely abolished the effect of NPY (10 nM) that alone caused 80% of the maximum inhibition of adenylate cyclase activity. These findings confirm that NPY(18-36) is a competitive antagonist of NPY in rat cardiac ventricular membranes. NPY cardiac receptor antagonist, NPY(18-36), or analogs based on this sequence may have potential clinical application, since NPY has been implicated in the pathophysiology of congestive heart failure.  相似文献   

20.
The neuropeptide Y-family receptor Y4 differs extensively between human and rat in sequence, receptor binding, and anatomical distribution. We have investigated the differences in binding profile between the cloned human, rat, and guinea pig Y4 receptors using NPY analogues with single amino acid replacements or deletion of the central portion. The most striking result was the increase in affinity for the rat receptor, but not for human or guinea pig, when amino acid 34 was replaced with proline; [Ahx(8-20),Pro(34)]NPY bound to the rat Y4 receptor with 20-fold higher affinity than [Ahx(8-20)]NPY. Also, the rat Y4 tolerates alanine in position 34 since p[Ala(34)]NPY bound with similar affinity as pNPY while the affinity for hY4 and gpY4 decreased about 50-fold. Alanine substitutions in position 33, 35, and 36 as well as the large loop-deletion, [Ahx(5-24)]NPY, reduced the binding affinity to all three receptors more than 100-fold. NPY and PYY competed with (125)I-hPP at Y4 receptors expressed in CHO cells according to a two-site model. This was investigated for gpY4 by saturation with either radiolabeled hPP or pPYY. The number of high-affinity binding-sites for (125)I-pPYY was about 60% of the receptors recognized by (125)I-hPP. Porcine [Ala(34)]NPY and [Ahx(8-20)]NPY bound to rY4 (but not to hY4 or gpY4) according to a two-site model. These results suggest that different full agonists can distinguish between different active conformations of the gpY4 receptor and that Y4 may display functional differences in vivo between human, guinea pig, and rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号