首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The balance of phagocytic function among Kupffer cells, hepatic endothelial cells and splenic macrophages in the chronically ethanol-fed rats has been investigated. Clearance of latex particles in the blood was measured to estimate the function of the reticuloendothelial system. Phagocytosis of latex particles by Kupffer cells, hepatic endothelial cells or splenic macrophages in vivo was measured by counting the number of ingested particles in a cell after isolation of hepatic nonparenchymal cells or spleen cells following injection of different amounts of latex particles. Latex particle clearance was suppressed in the ethanol-fed rats, demonstrating a decreased phagocytic capacity of the reticuloendothelial system. Markedly decreased phagocytic function was found in 40% of Kupffer cells of the chronically ethanol-fed rats. In contrast, the number of latex particles in hepatic endothelial cells and in splenic macrophages was increased after injection of a triggering dose of latex particles. From these results it may be concluded that an increased phagocytosis of hepatic endothelial cells and splenic macrophages could compensate for the decreased phagocytic function of Kupffer cells.  相似文献   

2.
The endocytosis of latex particles (0.33, 0.46 and 0.80 micron in diameter) in the sinusoidal endothelial and Kupffer cells of the rat liver was studied electron microscopically. When the liver was perfused with serum-free oxygenated Krebs Ringer bicarbonate, latex particles of all three sizes were taken up by the endothelial cells. After a 10-min perfusion, particles were incorporated by the luminal cell surface of the perikarya or of the thick portion of the endothelial cells. A large patch of bristle coat was surrounding the ingested particle. The number of ingested particles in the endothelial cells, however, was much less than in the Kupffer cells. In in vivo experiments, no endocytosis of the latex particles was observed in the endothelial cells. In the Kupffer cells, particles were engulfed by the ruffled membranes or sank into the cytoplasm without a large patch of the bristle coat both in the perfusion system and in vivo. These observations show that at least 0.80 micron latex particles are taken up by the bristle-coated membranes in the sinusoidal endothelial cells of the perfused liver. The endocytic mechanism for latex particles in the endothelial cells is different from that of the Kupffer cells.  相似文献   

3.
In this study, the distribution of free cholesterol in cholesterol-loaded endothelial cells was examined. For these studies, cell fractionation methods were used to assess marker enzyme activity and cholesterol distribution. Treatment of rabbit aortic endothelial cells for 3 days with 50 micrograms/ml of beta-very low density lipoprotein (beta-VLDL) or malondialdehyde-low density lipoprotein (MDA-LDL) but not LDL caused a 50-100% increase in total cell unesterified cholesterol. The accumulation of free rather than esterified cholesterol in endothelial cells may be due to the ratio of hydrolysis to esterification, which we have shown in this study to be 10-fold higher in endothelial cells than in smooth muscle cells. This free cholesterol is found in the fractions enriched in plasma membrane markers and, to a lesser extent, in the Golgi-enriched fractions. The amount of cholesterol per mg of protein was increased approximately 50% in these fractions from cells treated for 3 days with 50 micrograms/ml of beta-VLDL. These increases in cholesterol content were reversible upon incubation of cells for 3 days in medium containing 15% fetal bovine serum. Alterations in several membrane functions were also observed in cholesterol-loaded cells. The activity of alkaline phosphatase, an enzyme marker for plasma membranes, was decreased by 25% and an alteration in membrane-associated microfilaments was seen with phalloidin staining. This morphological change in microfilaments was reflected in a decrease in filament ends as shown by cytochalasin binding and occurred without a change in total actin or vinculin. These microfilament changes were reversible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Kimata H 《Life sciences》2005,76(13):1527-1532
Effect of cholesterol on in vitro latex-specific IgE production by mononuclear cells from atopic dermatitis patients with latex allergy. Cholesterol enhanced latex-specific IgE production in a dose-dependent fashion, and maximal enhancement was achieved at 1 microg/ml. In contrast, cholesterol had no effect on latex -specific IgA or IgG4 production. Study for cytokine production revealed that cholesterol decreased latex-induced production of IFN-gamma and IL-12, while it increased latex-induced production of IL-4, IL-10 and IL-13. These results indicate that cholesterol skews cytokine pattern toward Th2 type. Collectively, cholesterol may increase allergen-specific IgE production, which may in turn aggravate allergic symptoms.  相似文献   

5.
Peroxidase-positive endothelial cells in sinusoids of the mouse liver   总被引:3,自引:0,他引:3  
The cytochemical localization of endogenous peroxidase activity in sinus lining cells of mouse liver has been investigated. Kupffer cells, as identified by their exclusive ability to phagocytize large (0.8 micron) latex particles, exhibited strong peroxidase activity in nuclear envelope and endoplasmic reticulum. In addition, weak to moderate peroxidase activity was found in 57% of all endothelial cells. The enzyme in endothelial cells was also localized in nuclear envelope and endoplasmic reticulum, with a negative reaction in the Golgi apparatus. These observations indicate that peroxidase staining, as a marker for identification of Kupffer cells in mouse liver, is only of limited value and should be used in conjunction with other methods (e.g., latex phagocytosis).  相似文献   

6.
The aim of the study was to characterize the vascular effects of rice bran enzymatic extract (RBEE). ApoE−/− mice were fed a high-fat/cholesterol diet (HFD) or HFD supplemented with 5% RBEE for 21 weeks. RBEE prevented development of atherosclerotic plaques and oxidative stress in mouse aorta as well as the down-regulation of markers of mitochondrial biogenesis. Analysis of the bioactive components identified ferulic acid (FA) as responsible component. In healthy human volunteers, FA intake reduced NADPH oxidase activity, superoxide release, apoptosis and necrosis in peripheral blood mononuclear cells. Differentiation and proliferation of endothelial progenitor cells were improved. In summary, the study identifies FA as a major active component of rice bran, which improves expression of mitochondrial biogenesis and dynamics markers and reduces oxidative stress in a mouse model of vascular damage as well as in endothelial cells and human mononuclear cells.  相似文献   

7.
The translocator protein (18-kDa) TSPO is an ubiquitous high affinity cholesterol-binding protein reported to be present in the endothelial and smooth muscle cells of the blood vessels; its expression dramatically increased in macrophages found in atherosclerotic plaques. A domain in the carboxy-terminus of TSPO was identified and characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide could be used as an hypocholesterolemic, with potential anti-atherogenic properties, agent. We report herein the therapeutic benefit that resulted for the administration of the VLNYYVWR human CRAC sequence to guinea pigs fed with a high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. CRAC treatment (3 and 30 mg/kg once daily for 6 weeks) resulted in reduced circulating cholesterol levels in guinea pigs fed with 2% high cholesterol diet and ApoE knock-out B6.129P2-Apoetm1Unc/J mice. In high cholesterol fed guinea pigs, CRAC treatment administered once daily induced an increase in circulating HDL, decreased total, free and LDL cholesterol, and removed atheroma deposits in the aorta in a dose-dependent manner. The treatment also prevented the high cholesterol diet-induced increase in serum creatine kinase, total and isoforms, markers of neurological, cardiac and muscular damage. No toxicity was observed. Taken together these results support a role of TSPO in lipid homeostasis and atherosclerosis and indicate that CRAC may constitute a novel and safe treatment of hypercholesterolemia and atherosclerosis.  相似文献   

8.
The endothelial cell lining of blood vessels is now recognized as an active interface between blood and the underlying tissue. Modulation of cholesterol levels in several cell types has resulted in altered cell function. We have removed cholesterol from the endothelial cell membrane and have observed corresponding alterations in endothelial cell function. Following depletion of cholesterol from the endothelial cells, polymorphonuclear leukocyte adhesion to the cells was decreased. Angiotensin-converting enzyme activity of the endothelial cells was increased following removal of cholesterol from the endothelial cell membranes. The results of fluorescence polarization measurements suggest that these changes may be partially explained by altered membrane order.  相似文献   

9.
Diabetes mellitus impairs endothelial function, which can be considered as the hallmark in the development of cardiovascular diseases. Hyperglycemia, hyperinsulinemia, and hyperlipidemia are believed to contribute to endothelial dysfunction. In the present study, we investigated the possible links among these plasma metabolic markers and endothelial function in a mouse model during the development of type 2 diabetes. C57BL/6J-Lepob/ob mice at 8, 12, and 16 weeks were used to study endothelial function during the establishment of type 2 diabetes. Endothelial function was accessed in vitro in the thoracic aorta by measuring acetylcholine (ACh)-stimulated vasodilatation. Blood plasma was obtained for the measurements of glucose, insulin, triglycerides, and cholesterol levels. Correlation and multiple regression analysis revealed strong negative associations between the ACh responsiveness and the plasma levels of glucose, insulin, and lipid profiles at the age of 8 weeks. Associations were observed at neither older age nor in C57BL/6J mice. In conclusion, the increase in plasma levels of glucose, insulin, and lipids is associated with the impairment of the endothelial function during the early stage of the development of type 2 diabetes. The loss of correlation at an older age suggests multifactorial regulation of endothelial function and cardiovascular complications at later stages of the disease.  相似文献   

10.
Subjects with increased cholesterol absorption might benefit more from statin therapy combined with a cholesterol absorption inhibitor. We assessed whether baseline cholesterol absorption markers were associated with response to ezetimibe/simvastatin therapy, in terms of LDL-cholesterol (LDL-C) lowering and cholesterol absorption inhibition, in patients with familial hypercholesterolemia (FH). In a posthoc analysis of the two-year ENHANCE trial, we assessed baseline cholesterol-adjusted campesterol (campesterol/TC) and sitosterol/TC ratios in 591 FH patients. Associations with LDL-C changes and changes in cholesterol absorption markers were evaluated by multiple regression analysis. No association was observed between baseline markers of cholesterol absorption and the extent of LDL-C response to ezetimibe/simvastatin therapy (β = 0.020, P = 0.587 for campesterol/TC and β<0.001, P = 0.992 for sitosterol/TC). Ezetimibe/simvastatin treatment reduced campesterol levels by 68% and sitosterol levels by 62%; reductions were most pronounced in subjects with the highest cholesterol absorption markers at baseline, the so-called high absorbers (P < 0.001). Baseline cholesterol absorption status does not determine LDL-C lowering response to ezetimibe/simvastatin therapy in FH, despite more pronounced cholesterol absorption inhibition in high absorbers. Hence, these data do not support the use of baseline absorption markers as a tool to determine optimal cholesterol lowering strategy in FH patients. However, due to the exploratory nature of any posthoc analysis, these results warrant further prospective evaluation in different populations.  相似文献   

11.
Heredity of cholesterol absorption and synthesis was studied in siblings of hypercholesterolemic probands with low and high serum cholestanol to cholesterol ratio (assumed to indicate low and high absorption of cholesterol, respectively). Cholesterol synthesis was assayed with sterol balance technique and measuring serum cholesterol precursor to cholesterol ratios (synthesis markers of cholesterol), and cholesterol absorption with measuring dietary cholesterol absorption percentage and serum plant sterol and cholestanol to cholesterol ratios (absorption markers of cholesterol). In the siblings of the low absorption families, cholesterol absorption percentage and ratios of absorption markers were significantly lower, and cholesterol and bile acid synthesis, cholesterol turnover, fecal steroids and ratios of synthesis markers significantly higher than in the siblings of the high absorption families. The ratios of absorption and synthesis markers were inversely interrelated, and they were correlated with cholesterol absorption and synthesis in the siblings. In addition, low absorption was associated with high body mass index, low HDL cholesterol, and serum sex hormone binding globulin levels, suggesting that low absorption was associated with metabolic syndrome. Intrafamily correlations were significant for serum synthesis markers, cholestanol, triglycerides, and blood glucose level. In conclusion, cholesterol absorption efficiency and synthesis are partly inherited phenomena, and they can be predicted by the ratios of non-cholesterol sterols to cholesterol in serum.  相似文献   

12.
Oxidation of lipoproteins is believed to play a key role in atherogenesis. In this study, low density lipoproteins (LDL) was subjected to oxidation in the presence of either human umbilical vein endothelial cells or with Cu+2 ions and the major oxides formed were identified. While cholesterol-alpha-epoxide (C-alpha EP) was the major product of cholesterol peroxidation in the presence of endothelial cells, cholest-3,5-dien-7-one (CD) predominated in the presence of Cu+2 ion. Both steroids were identified by gas chromatography/mass spectrometry. HDL cholesterol was resistant to oxidation. When tested on human skin fibroblasts in culture C-alpha EP (10 micrograms/ml) caused marked stimulation of 14C-oleate incorporation into cholesterol esters, while CD stimulated cholesterol esterification only mildly. These studies show that a) C-alpha EP is the major peroxidation product of LDL cholesterol moiety in the presence of endothelial cells and b) it causes marked stimulation of cholesterol esterification in cells. C-alpha EP may play a key role in increasing cholesterol esterification noted in atherogenesis.  相似文献   

13.
1. The changes occurring on the surface of cultured aortic endothelial cells under the influence of exogenous cholesterol, lysolecithin, or cholesterol + lysolecithin were pursued by scanning and transmission electron microscopy. 2. Both compounds were found to cause surface changes under different quantitative relations, as shown by scanning electron microscopy of unfixed preparations. The changes were less significant in preparations fixed prior to the scanning--or transmission electron microscopic examination. 3. Other cell lines maintained in this laboratory and similarly treated with cholesterol, were found to be less responsive than the endothelial cells. 4. Cholesterol content was determined by thin layer chromatography in six different cell lines, before and after the addition of cholesterol. Only the endothelial cells showed a notable rise of cholesterol content after treatment. This fact may confirm our finding that cholesterol induced morphological changes were demonstrable only in the endothelial cells.  相似文献   

14.
Membrane potential of aortic endothelial cells under resting conditions is dominated by inward-rectifier K(+) channels belonging to the Kir 2 family. Regulation of endothelial Kir by membrane cholesterol was studied in bovine aortic endothelial cells by altering the sterol composition of the cell membrane. Our results show that enriching the cells with cholesterol decreases the Kir current density, whereas depleting the cells of cholesterol increases the density of the current. The dependence of the Kir current density on the level of cellular cholesterol fits a sigmoid curve with the highest sensitivity of the Kir current at normal physiological levels of cholesterol. To investigate the mechanism of Kir regulation by cholesterol, endogenous cholesterol was substituted by its optical isomer, epicholesterol. Substitution of approximately 50% of cholesterol by epicholesterol results in an early and significant increase in the Kir current density. Furthermore, substitution of cholesterol by epicholesterol has a stronger facilitative effect on the current than cholesterol depletion. Neither single channel properties nor membrane capacitance were significantly affected by the changes in the membrane sterol composition. These results suggest that 1) cholesterol modulates cellular K(+) conductance by changing the number of the active channels and 2) that specific cholesterol-protein interactions are critical for the regulation of endothelial Kir.  相似文献   

15.
We have examined the modifications occurring during the transformation of phagosomes into phagolysosomes in J-774 macrophages. The use of low density latex beads as markers of phagosomes (latex bead compartments, LBC) allowed the isolation of these organelles by flotation on a simple sucrose gradient. Two-dimensional gel electrophoresis, immunocytochemistry, and biochemical assays have been used to characterize the composition of LBC at different time points after their formation, as well as their interactions with the organelles of the endocytic pathway. Our results show that LBC acquire and lose various markers during their transformation into phagolysosomes. Among these are members of the rab family of small GTPases as well as proteins of the lamp family. The transfer of the LBC of lamp 2, a membrane protein associated with late endocytic structures, was shown to be microtubule dependent. Video-microscopy showed that newly formed phagosomes were involved in rapid multiple contacts with late components of the endocytic pathway. Collectively, these observations suggest that phagolysosome formation is a highly dynamic process that involves the gradual and regulated acquisition of markers from endocytic organelles.  相似文献   

16.
Cholesterol synthesis in actively growing bovine vascular endothelial cells is regulated by low density lipoprotein (LDL) at a step prior to mevalonate formation, in a manner comparable to that found in aortic smooth muscle cells. LDL uptake by these cells is associated with induction of cholesterol esterification, an increase in total cell cholesterol, and an inhibition of endogenous sterol synthesis. In contrast, cholesterol metabolism in confluent contact-inhibited endothelial cultures was not significantly affected by LDL even though the cells bind the lipoprotein at high affinity receptor sites. Lysosomal degradation and subsequent regulatory effects on cellular cholesterol metabolism, however, were observed in contact-inhibited endothelial cells incubated with cationized rather than native LDL. Cationized LDL enter the cells independently of the high affinity sites. Therefore, the primary regulation of cholesterol metabolism in these cells is neither through the appropriate intracellular enzymes nor through the high affinity surface receptors, but via an inhibition of LDL internalization. It is suggested that this inhibition is due to a strict contact-inhibited morphology which enables the endothelium of the larger arteries to function as a selective barrier to the high circulating levels of plasma LDL.  相似文献   

17.
The rate of degradation of oxidatively modified low density lipoprotein (Ox-LDL) by human endothelial cells was similar to that of unmodified low density lipoprotein (LDL), and was approximately 2-fold greater than the rate of degradation of acetylated LDL (Ac-LDL). While LDL and Ac-LDL both stimulated cholesterol esterification in endothelial cells, Ox-LDL inhibited cholesterol esterification by 34%, demonstrating a dissociation between the degradation of Ox-LDL and its ability to stimulate cholesterol esterification. Further, while LDL and Ac-LDL resulted in a 5- and 15-fold increase in cholesteryl ester accumulation, respectively, Ox-LDL caused only a 1.3-fold increase in cholesteryl ester mass. These differences could be accounted for, in part, by the reduced cholesteryl ester content of Ox-LDL. However, when endothelial cells were incubated with Ac-LDL in the presence and absence of Ox-LDL, Ox-LDL led to a dose-dependent inhibition of cholesterol esterification without affecting the degradation of Ac-LDL. This inhibitory effect of Ox-LDL on cholesteryl ester synthesis was also manifest in normal human skin fibroblasts incubated with LDL and in LDL-receptor-negative fibroblasts incubated with unesterified cholesterol to stimulate cholesterol esterification. Further, the lipid extract from Ox-LDL inhibited cholesterol esterification in LDL-receptor negative fibroblasts. These findings suggest that the inhibition of cholesterol esterification by oxidized LDL is independent of the LDL and scavenger receptors and may be a result of translocation of a lipid component of oxidatively modified LDL across the cell membrane.  相似文献   

18.
19.
The importance of flow shear stress (SS) on the differentiation of endothelial progenitor cells (EPCs) has been demonstrated in various studies. Cholesterol retention and microRNA regulation have been also proposed as relevant factors involved in this process, though evidence regarding their regulatory roles in the differentiation of EPCs is currently lacking. In the present study on high shear stress (HSS)-induced differentiation of EPCs, we investigated the importance of ATP-binding cassette transporter 1 (ABCA1), an important regulator in cholesterol efflux, and miR-25-5p, a potential regulator of endothelial reconstruction. We first revealed an inverse correlation between miR-25-5p and ABCA1 expression levels in EPCs under HSS treatment; their direct interaction was subsequently validated by a dual-luciferase reporter assay. Further studies using flow cytometry and quantitative polymerase chain reaction demonstrated that both miR-25-5p overexpression and ABCA1 inhibition led to elevated levels of specific markers of endothelial cells, with concomitant downregulation of smooth muscle cell markers. Finally, knockdown of ABCA1 in EPCs significantly promoted tube formation, which confirmed our conjecture. Our current results suggest that miR-25-5p might regulate the differentiation of EPCs partially through targeting ABCA1, and such a mechanism might account for HSS-induced differentiation of EPCs.  相似文献   

20.
Acetylated low-density lipoprotein (acetyl-LDL), biologically labelled in the cholesterol moiety of cholesteryl oleate, was injected into control and oestrogen-treated rats. The serum clearance, the distribution among the various lipoproteins, the hepatic localization and the biliary secretion of the [3H]cholesterol moiety were determined at various times after injection. In order to monitor the intrahepatic metabolism of the cholesterol esters of acetyl-LDL in vivo, the liver was subdivided into parenchymal, endothelial and Kupffer cells by a low-temperature cell-isolation procedure. In both control and oestrogen-treated rats, acetyl-LDL is rapidly cleared from the circulation, mainly by the liver endothelial cells. Subsequently, the cholesterol esters are hydrolysed, and within 1 h after injection, about 60% of the cell- associated cholesterol is released. The [3H]cholesterol is mainly recovered in the high-density lipoprotein (HDL) range of the serum of control rats, while low levels of radioactivity are detected in serum of oestrogen-treated rats. In control rats cholesterol is transported from endothelial cells to parenchymal cells (reverse cholesterol transport), where it is converted into bile acids and secreted into bile. The data thus provide evidence that HDL can serve as acceptors for cholesterol from endothelial cells in vivo, whereby efficient delivery to the parenchymal cells and bile is assured. In oestrogen-treated rats the radioactivity from the endothelial cells is released with similar kinetics as in control rats. However, only a small percentage of radioactivity is found in the HDL fraction and an increased uptake of radioactivity in Kupffer cells is observed. The secretion of radioactivity into bile is greatly delayed in oestrogen-treated rats. It is concluded that, in the absence of extracellular lipoproteins, endothelial cells can still release cholesterol, although for efficient transport to liver parenchymal cells and bile, HDL is indispensable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号