首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Protease nexin 1 (PN-1) is a protease inhibitor secreted by cultured fibroblasts that forms complexes with certain serine proteases; the complexes bind back to the cells and are internalized and degraded. In the present studies, a panel of PN-1 monoclonal antibodies (mAbs) was isolated; none showed detectable cross-reactivity with four related plasma protease inhibitors. Four purified mAbs (mAbp1, mAbp6, mAbp9, and mAbp18) were tested for their ability to block the formation of complexes between PN-1 and target proteases. mAbp1, as well as a rabbit polyclonal anti-PN-1 IgG preparation, did not block formation of 125I-thrombin-PN-1 complexes. mAbp6, mAbp9, and mAbp18 blocked the formation of 125I-thrombin-PN-1 and 125I-urokinase-PN-1 complexes at stoichiometric concentrations of mAb and PN-1. Studies on their ability to block formation of 125I-trypsin-PN-1 complexes showed that mAbp18 also blocked this reaction at stoichiometric concentrations with PN-1 whereas mAbp6 and mAbp9 blocked less effectively. Thus, mAbp18 appears to bind at or close to the reactive center of PN-1. The blocking mAbs should be useful in studies to probe physiological functions of PN-1.  相似文献   

2.
Inhibitors of Urokinase and Thrombin in Cultured Neural Cells   总被引:2,自引:1,他引:1  
Recent studies have suggested important roles for certain proteases and protease inhibitors in the growth and development of the CNS. In the present studies, inhibitors of urokinase or thrombin in cultured neural cells and serum-free medium from the cells were identified by screening for components that formed sodium dodecyl sulfate-stable complexes with 125I-urokinase or 125I-thrombin. Rinsed glioblastoma possessed two components that complexed 125I-urokinase. One was type 1 plasminogen activator inhibitor (PAI-1), because the 125I-urokinase-containing complexes were immunoprecipitated with anti-PAI-1 antibodies. The other component formed complexes with 125I-urokinase that were not recognized by antibodies to PAI-1 or protease nexin-1 (PN-1). Its identity is unknown. In addition to these cell-bound components, the glioblastoma cells also secreted two inhibitors that formed complexes with 125I-urokinase; one was PAI-1, and the other was PN-1. The secreted PN-1 also formed complexes with 125I-thrombin. It was the only thrombin inhibitor detected in these studies. Human neuroblastoma cells did not contain components that formed detectable complexes with either 125I-urokinase or 125I-thrombin. However, human neuroblastoma cells did contain very low levels of PN-1 mRNA and PN-1 protein. Added PN-1 bound to the surface of both glioblastoma and neuroblastoma cells. This interaction accelerated the inhibition of thrombin by PN-1 and blocked the ability of PN-1 to form complexes with 125I-urokinase. Thus, cell-bound PN-1 was a specific thrombin inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Protease nexin-1 (PN-1) is a protein proteinase inhibitor recently shown to be identical with the glial-derived neurite-promoting factor or glial-derived nexin. It has been shown to promote neurite outgrowth in neuroblastoma cells and in sympathetic neurons. The present experiments were designed to further test the hypothesis that this activity on neuroblastoma cells is due to its ability to complex and inhibit thrombin. It has been suggested that PN-1:thrombin complexes might mediate the neurite outgrowth activity of PN-1. However, the present studies showed that such complexes, unlike free PN-1, did not promote neurite outgrowth. The neurite outgrowth activity of PN-1 was only detected in the presence of thrombin or serum (which contains thrombin). PN-1 did not affect the rate or extent of neurite outgrowth that occurred when neuroblastoma cells were placed in serum-free medium. Retraction of neurites by thrombin was indistinguishable in cells whose neurites had been extended in the presence or absence of PN-1. The neurite-promoting activity of PN-1 was inhibited by an anti-PN-1 monoclonal antibody, which blocks its capacity to complex serine proteinases. The plasma thrombin inhibitor, antithrombin III, stimulated neurite outgrowth but only when its thrombin inhibitory activity was accelerated by heparin. The neurite outgrowth activity of both antithrombin III and PN-1 corresponded to their inhibition of thrombin. Together, these observations show that PN-1 promotes neurite outgrowth from neuroblastoma cells by inhibiting thrombin and suggest that this depends on the ability of thrombin to retract neurites.  相似文献   

5.
Interactions of serine proteases with cultured fibroblasts   总被引:1,自引:0,他引:1  
This review summarizes the mechanisms by which several serine proteases, particularly urokinase, thrombin, and elastase, interact with cultured fibroblasts. Many of these studies were prompted by findings that interactions of these proteases with cells and the extracellular matrix are important in a number of physiologic and pathologic processes. Two main pathways have been identified for specific interactions of these proteases with fibroblasts. One involves surface binding sites for the free protease that appear to bind only one particular protease. An unusual feature collectively shared by the binding sites for urokinase, thrombin, and elastase is that the bound protease is not detectably internalized by the fibroblasts. The other pathway by which serine proteases interact with fibroblasts involves proteins named protease nexins (PNs). Three PNs have been identified. They are secreted by fibroblasts and inhibit certain serine proteases by forming a covalent complex with the protease catalytic site serine. The complexes then bind back to the fibroblasts via the PN portion of the complex and are internalized and degraded. Recent studies showing that the fibroblast surface and extracellular matrix accelerate the inactivation of thrombin by PN-1 support the hypothesis that the PNs control protease activity at and near the cell surface. The PNs differ from plasma protease inhibitors in their molecular properties, absence in plasma, site of synthesis, and site of clearance of the inhibitor:protease complexes.  相似文献   

6.
Protease nexin-1 (PN-1), an inhibitor of serine proteases, contributes to tissue homeostasis and influences the behavior of some tumor cells. The internalization of PN-1 protease complexes is considered to be mediated by the low-density lipoprotein receptor related protein 1 (LRP1). In this study, both wild-type and LRP1-/- mouse embryonic fibroblasts (MEF) were shown to internalize PN-1. Receptor associated protein (RAP) interfered with PN-1 uptake only in wild-type MEF cells, indicating that another receptor mediates PN-1 uptake in the absence of LRP1. In LRP1-/- MEF cells, inhibitor sensitivity and kinetic values (t(1/2) at 45 min) of PN-1 uptake showed a similarity to syndecan-1-mediated endocytosis. In these cells, PN-1 uptake was increased by overexpression of full-length syndecan-1 and decreased by RNA interference targeting this proteoglycan. Most important, in contrast to PKA activation known to be triggered by LRP1-mediated internalization, our study shows that syndecan-1-mediated internalization of PN-1 stimulated the Ras-ERK signaling pathway.  相似文献   

7.
Heparin activates the serpin, antithrombin, to inhibit its target blood-clotting proteases by generating new protease interaction exosites. To resolve the effects of these exosites on the initial Michaelis docking step and the subsequent acylation and conformational change steps of antithrombin-protease reactions, we compared the reactions of catalytically inactive S195A and active proteases with site-specific fluorophore-labeled antithrombins that allow monitoring of these reaction steps. Heparin bound to N,N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled antithrombins and accelerated the reactions of the labeled inhibitor with thrombin and factor Xa similar to wild type. Equilibrium binding of NBD-labeled antithrombins to S195A proteases showed that exosites generated by conformationally activating antithrombin with a heparin pentasaccharide enhanced the affinity of the serpin for S195A factor Xa minimally 100-fold. Moreover, additional bridging exosites provided by a hexadecasaccharide heparin activator enhanced antithrombin affinity for both S195A factor Xa and thrombin at least 1000-fold. Rapid kinetic studies showed that these exosite-mediated enhancements in Michaelis complex affinity resulted from increases in k(on) and decreases in k(off) and caused antithrombin-protease reactions to become diffusion-controlled. Competitive binding and kinetic studies with exosite mutant antithrombins showed that Tyr-253 was a critical mediator of exosite interactions with S195A factor Xa; that Glu-255, Glu-237, and Arg-399 made more modest contributions to these interactions; and that exosite interactions reduced k(off) for the Michaelis complex interaction. Together these results show that exosites generated by heparin activation of antithrombin function both to promote the formation of an initial antithrombin-protease Michaelis complex and to favor the subsequent acylation of this complex.  相似文献   

8.
Numerous studies have shown that fibrin-bound thrombin (IIa) is protected from inhibition by antithrombin (AT) + heparin (H) due to the formation of a ternary fibrin.IIa.H complex. We investigated factors affecting the inhibition of fibrin.IIa by a covalent complex of AT and H (ATH). The rate of IIa reaction with ATH was decreased 2-3-fold by fibrin monomer as compared to 57-fold for AT + heparin with high AT affinity. Furthermore, although the reaction of AT + H with a IIa mutant with decreased H binding (RA-IIa) was inhibited 2-3-fold in the presence of fibrin, reaction rates of ATH + RA-IIa were not reduced by fibrin. The relative difference in the effect of fibrin on the ATH reaction with RA-IIa compared to that for reactions of AT + H with RA-IIa is consistent with the fact that, in the absence of fibrin, the rate of the ATH reaction with RA-IIa relative to IIa was much less reduced (8-fold) compared to the corresponding reactions of AT + H (decreased 306 fold). Similarly, the addition of excess H in the absence of fibrin gave only a small decrease in rate of ATH + IIa reaction. However, in the presence of fibrin, the addition of 40-fold excess H decreased the rate of ATH inhibition of IIa by 1 order of magnitude. Experiments with ATH containing low molecular weight heparin chains with low AT affinity showed that IIa inhibition requires ATH with long chains that activate the AT moiety. Finally, electrophoresis of fibrin +/- ((125)I-)IIa +/- ((125)I-)ATH on native and denaturing gels showed that ATH forms ATH-IIa complexes that remain bound to fibrin through the ATH component. Thus, ATH is a potent inhibitor of fibrin-bound IIa, likely due to the formation of fibrin.ATH-IIa as opposed to fibrin.IIa.H ternary complexes.  相似文献   

9.
Inhibition of thrombin by heparin cofactor II (HCII) is accelerated by dermatan sulfate, heparan sulfate, and heparin. Purified HCII or defibrinated plasma was incubated with washed confluent cell monolayers, 125I-thrombin was added, and the rate of formation of covalent 125I-thrombin-inhibitor complexes was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Fibroblasts and porcine aortic smooth muscle cells accelerated inhibition of thrombin by HCII 2.3-7.5-fold but had no effect on other thrombin inhibitors in plasma. Human umbilical vein endothelial cells and mouse macrophage-derived cells did not accelerate the thrombin-HCII reaction. IMR-90 normal human fetal lung fibroblasts treated with heparinase or heparitinase accelerated the thrombin-HCII reaction to the same degree as untreated cells. In contrast, treatment with chondroitinase ABC almost totally abolished the ability of these cells to activate HCII while chondroitinase AC had little or no effect, suggesting that dermatan sulfate was responsible for the activity observed. [35S]Sulfate-labeled proteoglycans were isolated from IMR-90 fibroblast monolayers and conditioned medium and fractionated into two peaks on Sepharose CL-2B. The lower Mr proteoglycans contained 74-76% dermatan sulfate and were 11-25 times more active with HCII than the higher Mr proteoglycans which contained 68-97% heparan sulfate. The activity of the lower Mr proteoglycans decreased 70-90% by degradation of the dermatan sulfate component with chondroitinase ABC. These results confirm that dermatan sulfate proteoglycans are primarily responsible for activation of HCII by IMR-90 fibroblasts. We suggest that HCII may inhibit thrombin when plasma is exposed to vascular smooth muscle cells or fibroblasts.  相似文献   

10.
We studied the inhibition of tissue kallikrein by protein C inhibitor (PCI), a relatively unspecific heparin-dependent serine protease inhibitor present in plasma and urine. PCI inhibited the amidolytic activity (cleavage of H-D-valyl-L-leucyl-arginine-p-nitroaniline) of urinary kallikrein with an apparent second order rate constant of 2.3 x 10(4) M-1 s-1 and formed stable complexes (85 kDa) with urinary kallikrein as judged from silver-stained sodium dodecyl sulfate-polyacrylamide gels. Complex formation was time-dependent and was paralleled by a decrease in the intensity of the main PCI protein band (Mr = 57,000) and an increase in the intensity of the lower Mr (54,000) PCI form (cleaved inhibitor). Heparin interfered with the inhibition of tissue kallikrein by PCI and with the formation of tissue kallikrein-PCI complexes in a dose-dependent fashion and completely abolished PCI-tissue kallikrein interaction at 300 micrograms/ml. This is in contrast to findings on the interaction of PCI with all other target proteases studied so far (i.e. stimulation of inhibition by heparin) but is similar to the reaction pattern of 125I-labeled tissue kallikrein with so called kallikrein binding protein described in serum and other systems. To study a possible relationship between PCI and this kallikrein binding protein we incubated 125I-labeled urinary kallikrein in serum and in PCI-immunodepleted serum in the absence and presence of heparin and analyzed complex formation using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In normal serum, formed complexes co-migrated with complexes of purified PCI and 125I-kallikrein and were less intense in the presence of heparin. No complex formation at all was seen in PCI-depleted serum. Our data indicate that PCI may be a physiologically important endogenous inhibitor of tissue kallikrein and provide evidence that PCI may be identical to the previously described kallikrein binding protein.  相似文献   

11.
A high-affinity heparin subfraction accounting for 8% of whole heparin from bovine lung was isolated by low-density lipoprotein (LDL)-affinity chromatography. When compared to whole heparin, the high-affinity subfraction was relatively higher in molecular weight (11,000 vs. 17,000) and contained more iduronyl sulfate as hexuronic acid (76% vs. 86%), N-sulfate ester (0.75 vs. 0.96 mol/mol hexosamine), and O-sulfate ester (1.51 vs. 1.68 mol/mol hexosamine). Although both heparin preparations formed insoluble complexes with LDL quantitatively in the presence of 30 mM Ca2+, the concentrations of NaCl required for 50% reduction in maximal insoluble complex formation was markedly higher with high-affinity subfraction (0.55 M vs. 0.04 M). When compared to complex of 125I-LDL and whole heparin (H-125I-LDL), complex of 125I-LDL and high-affinity heparin subfraction (HAH-125I-LDL) produced marked increase in the degradation of lipoproteins by macrophages (7-fold vs. 1.4-fold over native LDL, after 5 h incubation) as well as cellular cholesteryl ester synthesis (16.7-fold vs. 2.2-fold over native LDL, after 18 h incubation) and content (36-fold vs. 2.7-fold over native LDL, after 48 h incubation). After a 5 h incubation, macrophages accumulated 2.3-fold more cell-associated radioactivity from HAH-125I-LDL complex than from [125I]acetyl-LDL. While unlabeled HAH-LDL complex produced a dose-dependent inhibition of the degradation of labeled complex, native unlabeled LDL did not elicit any effect even at a 20-fold excess concentration. Unlabeled particulate LDL aggregate competed for 33% of degradation of labeled complex; however, cytochalasin D, known inhibitor of phagocytosis, did not effectively inhibit the degradation of labeled complex. Unlabeled acetyl-LDL produced a partial (33%) inhibition of the degradation of labeled complex. These results indicate that (1) the interaction of high-affinity heparin subfraction with LDL leads to scavenger receptor mediated endocytosis of the lipoprotein, and stimulation of cholesteryl ester synthesis and accumulation in the macrophages; and (2) with respect to macrophage recognition and uptake, HAH-LDL complex was similar but not identical to acetyl-LDL. These observations may have implications for atherogenesis, because both mast cells and endothelial cells can synthesize heparin in the arterial wall.  相似文献   

12.
W P Fay  W G Owen 《Biochemistry》1989,28(14):5773-5778
Plasminogen activator inhibitor (PAI) was purified in active form from porcine platelets under nondenaturing conditions. The purified inhibitor (Mr 47,000) reacts with tissue-type plasminogen activator (t-PA), urokinase (UK), and activated protein C (APC) to yield both SDS-stable complexes and a modified PAI of slightly reduced molecular weight. The second-order rate constants for the inhibition of t-PA and UK by PAI are 3.5 X 10(7) and 3.4 X 10(7) M-1 s-1, respectively. Activated protein C reacts with PAI with a second-order rate constant of 1.1 X 10(4) M-1 s-1. This rate is not accelerated by protein S, phospholipid, and calcium, or heparin. It is concluded that (1) PAI can function as both inhibitor and substrate of its target proteases, (2) if APC promotes fibrinolysis via inactivation of PAI, then APC must be present in concentrations several orders of magnitude greater than t-PA, or the interaction of APC and PAI must be accelerated by presently unknown mechanisms, and (3) in the absence of heparin, platelet PAI is the most rapid inhibitor of APC yet described.  相似文献   

13.
Fibroblasts as well as several other cell types, secrete a number of protease inhibitors into their culture media. Among these inhibitors are the protease nexins, a class of proteins which covalently bind serine proteases, thereby inactivating their specific targets. Protease nexin-I, first discovered in human foreskin fibroblasts, binds thrombin, plasmin, and urokinase with high affinity, forming covalently linked complexes. Human fibroblasts bind complexes of protease nexin-I and its target protease via a cell-surface, high-affinity receptor. We have analyzed a number of characteristics of this receptor, and found them to be typical of class II receptors in general. At 4 degrees C binding of PN-I:protease complexes was competed by heparin. In addition, binding was independent of the particular protease bound to the PN-I; purified complexes of PN-I with thrombin or urokinase competed equipotently for [125]I-thrombin:PN-I binding. As the pH of the binding buffer was lowered, binding to cells increased. A twofold increase in binding was attained by lowering the pH from 7.5 to 4.5. This phenomenon was not due to irreversible, pH-induced changes to either the cell surface or the labeled complexes. At 37 degrees C, the removal of labeled complexes from culture medium was rapid; approximately 80% was removed by 4 hours under given conditions. The internalization of complexes was also very rapid, with an estimated ke (endocytic rate constant) of 1.0 min-1. At neutral pH, fibroblasts bind complexes in a saturable manner. Scatchard analysis yields a receptor number of 250,000 per cell and a Kd of 1 nM.  相似文献   

14.
Previous studies have shown that glycosaminoglycans in the extracellular matrix accelerate the inactivation of target proteases by certain protease inhibitors. It has been suggested that the ability of the matrix of certain cells to accelerate some inhibitors but not others might reflect the site of action of the inhibitors. Previous studies showed that fibroblasts accelerate the inactivation of thrombin by protease nexin-1, an inhibitor that appears to function at the surface of cells in extravascular tissues. The present experiments showed that endothelial cells also accelerate this reaction. The accelerative activity was accounted for by the extracellular matrix and was mostly due to heparan sulfate. Fibroblasts but not endothelial cells accelerated the inactivation of thrombin by heparin cofactor II, an abundant inhibitor in plasma. This is consistent with previous suggestions that heparin cofactor II inactivates thrombin when plasma is exposed to fibroblasts and smooth muscle cells. Neither fibroblasts nor endothelial cells accelerated the inactivation of C1s by plasma C1-inhibitor.  相似文献   

15.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

16.
In the present studies we have made the novel observation that protease nexin 1 (PN1), a member of the serine protease inhibitor (SERPIN) superfamily, is a potent inhibitor of the blood coagulation Factor XIa (FXIa). The inhibitory complexes formed between PN1 and FXIa are stable when subjected to reducing agents, SDS, and boiling, a characteristic of the acyl linkage formed between SERPINs and their cognate proteases. Using a sensitive fluorescence-quenched peptide substrate, the K(assoc) of PN1 for FXIa was determined to be 7.9 x 10(4) m(-)(1) s(-)(1) in the absence of heparin. In the presence of heparin, this rate was accelerated to 1.7 x 10(6), M(-)(1) s(-)(1), making PN1 a far better inhibitor of FXIa than C1 inhibitor, which is the only other SERPIN known to significantly inhibit FXIa. FXIa-PN1 complexes are shown to be internalized and degraded by human fibroblasts, most likely via the low density lipoprotein receptor-related protein (LRP), since degradation was strongly inhibited by the LRP agonist, receptor-associated protein. Since FXIa proteolytically modifies the amyloid precursor protein, this observation may suggest an accessory role for PN1 in the pathobiogenesis of Alzheimer's disease.  相似文献   

17.
A new form of high affinity fibroblast growth factor receptor has been purified from adult bovine brain membranes. Purification was performed by chromatography on DEAE-Trisacryl and wheat germ agglutinin-agarose followed by FGF-2 affinity chromatography. Affinity labeling of purified fractions with 125I-FGF-2 showed after cross-linking a 170-kDa complex, suggesting the existence of a 150-kDa FGF receptor. No cross-reactivity with anti-FGF receptor 1 (FGFR-1 or flg) or with anti-receptor 2 (FGFR-2 or bek) antibodies could be detected with this partially purified receptor. Heparitinase treatment of the partially purified FGF receptor abolished the formation of the ligand receptor complex. The complex was restored in the presence of heparin in a dose dependent fashion, supporting the idea that heparin-like molecules are needed for proper binding. Further purification of the receptor was achieved by heparin-Sepharose affinity chromatography and yielded a purification of over 320,000-fold. The purified receptor fraction was radiolabeled and loaded on RPLC C4 column. Eluted fractions were analysed by SDS-PAGE. A major 150-kDa band was detected. These data show for the first time a new form of FGF receptor isolated from bovine brain membranes. This purified receptor displays affinity for heparin and was therefore named heparin binding FGF receptor (HB-FGFR). It remains unclear whether the receptor is a proteo-heparin sulfate or whether heparans are strongly associated and therefore are copurified. Large scale preparations are in progress for core protein structure studies.  相似文献   

18.
Protease nexin. Properties and a modified purification procedure   总被引:21,自引:0,他引:21  
The present paper describes chemical and functional properties of protease nexin, a serine protease inhibitor released from cultured human fibroblasts. It is shown that protease nexin is actually synthesized by fibroblasts and represents about 1% of their secreted protein. Analysis of the amino acid composition of purified protease nexin indicates that it is evolutionarily related to antithrombin III and heparin cofactor II. Protease nexin contains approximately 6% carbohydrate, with 2.3% amino sugar, 1.1% neutral sugar, and 3.0% sialic acid. The Mr calculated from equilibrium sedimentation analysis is 43,000. Protease nexin is a broad specificity inhibitor of trypsin-like serine proteases. It reacts rapidly with trypsin (kassoc = 4.2 +/- 0.4 X 10(6) M-1 s-1), thrombin (kassoc = 6.0 +/- 1.3 X 10(5) M-1 s-1), urokinase (kassoc = 1.5 +/- 0.1 X 10(5) M-1 s-1), and plasmin (kassoc = 1.3 +/- 0.1 X 10(5) M-1 s-1), and slowly inhibits Factor Xa and the gamma subunit of nerve growth factor but does not inhibit chymotrypsin-like proteases or leukocyte elastase. In the presence of heparin, protease nexin inhibits thrombin at a nearly diffusion-controlled rate. Two heparin affinity classes of protease nexin can be detected. The present characterization pertains to the fraction of protease nexin having the higher affinity for heparin. The low affinity material, which is the minor fraction, is lost during purification.  相似文献   

19.
Antithrombin, a major anticoagulant, is robustly transported into extravascular compartments where its target proteases are largely unknown. This serpin was previously detected in human milk as complexes with matriptase, a membrane-bound serine protease broadly expressed in epithelial and carcinoma cells, and under tight regulation by hepatocyte growth factor activator inhibitor (HAI)-1, a transmembrane Kunitz-type serine protease inhibitor that forms heat-sensitive complexes with active matriptase. In the current study, we detect, in addition to matriptase-HAI-1 complexes, heat-resistant matriptase complexes generated by nontransformed mammary, prostate, and epidermal epithelial cells that we show to be matriptase-antithrombin complexes. These findings suggest that in addition to HAI-1, interstitial antithrombin participates in the regulation of matriptase activity in epithelial cells. This physiological mechanism appears, however, to largely be lost in cancer cells since matriptase-antithrombin complexes were not detected in all but two of a panel of seven breast, prostate, and ovarian cancer cell lines. Using purified active matriptase, we further characterize the formation of matriptase-antithrombin complex and show that heparin can significantly potentiate the inhibitory potency of antithrombin against matriptase. Second-order rate constants for the inhibition were determined to be 3.9 × 10(3) M(-1)s(-1) in the absence of heparin and 1.2 × 10(5) M(-1)s(-1) in the presence of heparin, a 30-fold increase, consistent with the established role of heparin in activating antithrombin function. Taken together these data suggest that normal epithelial cells employ a dual mechanism involving HAI-1 and antithrombin to control matriptase and that the antithrombin-based mechanism appears lost in the majority of carcinoma cells.  相似文献   

20.
Protease nexin-1 (PN-1) is a proteinase inhibitor that is secreted by human fibroblasts in culture. PN-1 inhibits certain regulatory serine proteinases by forming a covalent complex with the catalytic-site serine residue; the complex then binds to the cell surface and is internalized and degraded. The fibroblast surface was recently shown to accelerate the rate of complex-formation between PN-1 and thrombin. The present paper demonstrates that the accelerative activity is primarily due to cell-surface heparan sulphate, with a much smaller contribution from chondroitin sulphate. This conclusion is supported by the effects of purified glycosaminoglycans on the second-order rate constant for the inhibition of thrombin by PN-1. Also, treatment of 35SO4(2-)-labelled cells with heparitin sulphate lyase or chondroitin sulphate ABC lyase demonstrated two discrete pools of 35S-labelled glycosaminoglycans; subsequent treatment of plasma membranes with these glycosidases showed that heparitin sulphate lyase treatment abolished about 80% of the accelerative activity and chondroitin sulphate ABC lyase removed the remaining 20%. These results show that two components are responsible for the acceleration of PN-1-thrombin complex-formation by human fibroblasts. Although dermatan sulphate is also present on fibroblasts, it did not accelerate the inhibition of thrombin by PN-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号