首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Although orthostatic hypotension is a common clinical syndrome after spaceflight and its ground-based simulation model, 6 degrees head-down bed rest (HDBR), the pathophysiology remains unclear. The authors' hypothesis that a decrease in sympathetic nerve activity is the major pathophysiology underlying orthostatic hypotension after HDBR was tested in a study involving 14-day HDBR in 22 healthy subjects who showed no orthostatic hypotension during 15-min 60 degrees head-up tilt test (HUT) at baseline. After HDBR, 10 of 22 subjects demonstrated orthostatic hypotension during 60 degrees HUT. In subjects with orthostatic hypotension, total activity of muscle sympathetic nerve activity (MSNA) increased less during the first minute of 60 degrees HUT after HDBR (314% of resting supine activity) than before HDBR (523% of resting supine activity, P < 0.05) despite HDBR-induced reduction in plasma volume (13% of plasma volume before HDBR). The postural increase in total MSNA continued during several more minutes of 60 degrees HUT while arterial pressure was maintained. Thereafter, however, total MSNA was paradoxically suppressed by 104% of the resting supine level at the last minute of HUT (P < 0.05 vs. earlier 60 degrees HUT periods). The suppression of total MSNA was accompanied by a 22 +/- 4-mmHg decrease in mean blood pressure (systolic blood pressure <80 mmHg). In contrast, orthostatic activation of total MSNA was preserved throughout 60 degrees HUT in subjects who did not develop orthostatic hypotension. These data support the hypothesis that a decrease in sympathetic nerve activity is the major pathophysiological factor underlying orthostatic hypotension after HDBR. It appears that the diminished sympathetic activity, in combination with other factors associated with HDBR (e.g., hypovolemia), may predispose some individuals to postural hypotension.  相似文献   

2.
We tested the hypothesis that 60 days of head-down bed rest (HDBR) would affect cerebrovascular autoregulation and that this change would be correlated with changes in tolerance to the upright posture. Twenty-four healthy women (32 +/- 4 yrs) participated in a 60-d bed rest study at the MEDES Clinic in Toulouse, France. End tidal CO2 (ETCO2), continuous blood pressure (BP), middle cerebral artery (MCA) velocity and time to presyncope (endpoint) were measured during an orthostatic tolerance test conducted before/after bed rest. Given the large range of change in tolerance even within assigned countermeasure groups, we separated subjects for this analysis on the basis of the change in endpoint (Delta endpoint) pre- to post-bed rest. Autoregulation and CO2 responsiveness were evaluated on a different day from a two-breath test with intermittent hypercapnic exposure. Autoregressive moving average (ARMA) modeled the two confounding inputs, BP and CO2, on cerebrovascular blood flow. The cerebrovascular resistance index (CVRi) was expected to decrease following a decrease in BP at the MCA to assist in maintenance of cerebral blood flow. Subjects with the smallest Delta endpoint after bed rest had a 78% increase in the gain of the BP --> CVRi response. Meanwhile, the groups with greater decline in orthostatic tolerance post-HDBR had no change in the gain of this response. ETCO2 was lower overall following HDBR, decreasing from 41.8 +/- 3.4 to 40.2 +/- 3.0 in supine rest, 37.9 +/- 3.4 to 33.3 +/- 4.0 in early tilt, and 29.5 +/- 4.4 to 27.1 +/- 5.1 at pre-syncope. There was however, higher MCA velocity at any ETCO2 for post- compared to pre-HDBR. In summary, changes in autoregulation were found only in those subjects who had the smallest change from pre- to post-HDBR orthostatic tolerance. The changes may assist in buffering changes in cerebral blood flow during orthostatic hypotension post-HDBR. The reduction in ETCO2 after bed rest might be due to a change in chemoreceptor response to blood CO2, but the cerebrovascular system seems to have completely compensated.  相似文献   

3.
Bed rest (BR) deconditioning causes excessive increase of exercise core body tempera-ture, while aerobic training improves exercise thermoregulation. The study was designed to determine whether 3 days of 6 degrees head-down bed rest (HDBR) affects body temperature and sweating dynamics during exercise and, if so, whether endurance training before HDBR modifies these responses. Twelve healthy men (20.7+/-0.9 yrs, VO2max: 46+/-4 ml x kg(-1) x min(-1) ) underwent HDBR twice: before and after 6 weeks of endurance training. Before and after HDBR, the subjects performed 45 min sitting cycle exercise at the same workload equal to 60% of VO2max determined before training. During exercise the VO2, HR, tympanic (Ttymp) and skin (Tsk) temperatures were recorded; sweating dynamics was assayed from a ventilated capsule on chest. Training increased VO2max by 12.1% (p<0.001). Resting Ttymp increased only after first HDBR (by 0.22 +/- 0.08 degrees C, p<0.05), while exercise equilibrium levels of Ttymp were increased (p<0.05) by 0.21 +/- 0.07 and 0.26 +/- 0.08 degrees C after first and second HDBR, respectively. Exercise mean Tsk tended to be lower after both HDBR periods. Total sweat loss and time-course of sweating responses were similar in all exercise tests. The sweating threshold related to Ttymp was elevated (p<0.05) only after first HDBR. In conclusion: six-week training regimen prevents HDBR-induced elevation of core temperature (Ttymp) at rest but not during ex-ercise. The post-HDBR increases of Ttymp without changes in sweating rate and the tendency for lower Tsk suggest an early (<3d) influence of BR on skin blood flow.  相似文献   

4.
Cardiovascular deconditioning reduces orthostatic tolerance. To determine whether changes in autonomic function might produce this effect, we developed stimulus-response curves relating limb vascular resistance, muscle sympathetic nerve activity (MSNA), and pulmonary capillary wedge pressure (PCWP) with seven subjects before and after 18 days of -6 degrees head-down bed rest. Both lower body negative pressure (LBNP; -15 and -30 mmHg) and rapid saline infusion (15 and 30 ml/kg body wt) were used to produce a wide variation in PCWP. Orthostatic tolerance was assessed with graded LBNP to presyncope. Bed rest reduced LBNP tolerance from 23.9 +/- 2.1 to 21.2 +/- 1.5 min, respectively (means +/- SE, P = 0.02). The MSNA-PCWP relationship was unchanged after bed rest, though at any stage of the LBNP protocol PCWP was lower, and MSNA was greater. Thus bed rest deconditioning produced hypovolemia, causing a shift in operating point on the stimulus-response curve. The relationship between limb vascular resistance and MSNA was not significantly altered after bed rest. We conclude that bed rest deconditioning does not alter reflex control of MSNA, but may produce orthostatic intolerance through a combination of hypovolemia and cardiac atrophy.  相似文献   

5.
This study examined the effectiveness of a short-duration but high-intensity exercise countermeasure in combination with a novel oral volume load in preventing bed rest deconditioning and orthostatic intolerance. Bed rest reduces work capacity and orthostatic tolerance due in part to cardiac atrophy and decreased stroke volume. Twenty seven healthy subjects completed 5 wk of -6 degree head down bed rest. Eighteen were randomized to daily rowing ergometry and biweekly strength training while nine remained sedentary. Measurements included cardiac mass, invasive pressure-volume relations, maximal upright exercise capacity, and orthostatic tolerance. Before post-bed rest orthostatic tolerance and exercise testing, nine exercise subjects were given 2 days of fludrocortisone and increased salt. Sedentary bed rest led to cardiac atrophy (125 ± 23 vs. 115 ± 20 g; P < 0.001); however, exercise preserved cardiac mass (128 ± 38 vs. 137 ± 34 g; P = 0.002). Exercise training preserved left ventricular chamber compliance, whereas sedentary bed rest increased stiffness (180 ± 170%, P = 0.032). Orthostatic tolerance was preserved only when exercise was combined with volume loading (-10 ± 22%, P = 0.169) but not with exercise (-14 ± 43%, P = 0.047) or sedentary bed rest (-24 ± 26%, P = 0.035) alone. Rowing and supplemental strength training prevent cardiovascular deconditioning during prolonged bed rest. When combined with an oral volume load, orthostatic tolerance is also preserved. This combined countermeasure may be an ideal strategy for prolonged spaceflight, or patients with orthostatic intolerance.  相似文献   

6.
Orthostatic intolerance is the most serious symptom of cardiovascular deconditioning induced by microgravity exposure. In fact the neural control mechanisms of the cardiovascular system are significantly affected by this condition. Non-invasive measurement of Heart Rate Variability (HRV) have been used as a valuable tool to characterize the ability of neuroendocrine regulatory systems to modulate the cardiovascular function by analyzing the spontaneous fluctuations of arterial pressure and heart period on a beat-to-beat basis. Concerning this, conflicting results have been reported on the heart rate and blood pressure variability responses during exposure to microgravity. These differences seem to be due to different experimental designs used. Moreover, the different behavior of normal subjects in response to orthostatic stress after HD, i.e. Symptomatic (S) or Non Symptomatic (NS), could play some roles in producing these discrepancies. Therefore the aim of the present study was to examine BP and HR variability before and after 4 hours of HD in two groups of normal subjects with and without symptoms of orthostatic intolerance to orthostatic stress.  相似文献   

7.
Exposure to a period of microgravity or bed rest produces several physiological adaptations. These changes, which include an increased incidence of orthostatic intolerance, have an impact when people return to a 1G environment or resume an upright posture. Compared with males, females appear more susceptible to orthostatic intolerance after exposure to real or simulated microgravity. Decreased arterial baroreflex compensation may contribute to orthostatic intolerance. We hypothesized that female rats would exhibit a greater reduction in arterial baroreflex function after hindlimb unloading (HU) compared with male rats. Mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded in conscious animals after 13-15 days of HU. Baseline HR was elevated in female rats, and HU increased HR in both genders. Consistent with previous results in males, baroreflex-mediated activation of RSNA was blunted by HU in both genders. Maximum RSNA in response to decreases in MAP was reduced by HU (male control 513 +/- 42%, n = 11; male HU 346 +/- 38%, n = 13; female control 359 +/- 44%, n = 10; female HU 260 +/- 43%, n = 10). Maximum baroreflex increase in RSNA was lower in females compared with males in both control and HU rats. Both female gender and HU attenuated baroreflex-mediated increases in sympathetic activity. The combined effects of HU and gender resulted in reduced baroreflex sympathetic reserve in females compared with males and could contribute to the greater incidence of orthostatic intolerance in females after exposure to spaceflight or bed rest.  相似文献   

8.
Women have a greater incidence of orthostatic intolerance than men. We hypothesized that this difference is related to hemodynamic effects on regulation of cardiac filling rather than to reduced responsiveness of vascular resistance during orthostatic stress. We constructed Frank-Starling curves from pulmonary capillary wedge pressure (PCWP), stroke volume (SV), and stroke index (SI) during lower body negative pressure (LBNP) and saline infusion in 10 healthy young women and 13 men. Orthostatic tolerance was determined by progressive LBNP to presyncope. LBNP tolerance was significantly lower in women than in men (626.8 +/- 55.0 vs. 927.7 +/- 53.0 mmHg x min, P < 0.01). Women had steeper maximal slopes of Starling curves than men whether expressed as SV (12.5 +/- 2.0 vs. 7.1 +/- 1.5 ml/mmHg, P < 0.05) or normalized as SI (6.31 +/- 0.8 vs. 4.29 +/- 0.6 ml.m-2.mmHg-1, P < 0.05). During progressive LBNP, PCWP dropped quickly at low levels, and reached a plateau at high levels of LBNP near presyncope in all subjects. SV was 35% and SI was 29% lower in women at presyncope (both P < 0.05). Coincident with the smaller SV, women had higher heart rates but similar mean arterial pressures compared with men at presyncope. Vascular resistance and plasma norepinephrine concentration were similar between genders. We conclude that lower orthostatic tolerance in women is associated with decreased cardiac filling rather than reduced responsiveness of vascular resistance during orthostatic challenges. Thus cardiac mechanics and Frank-Starling relationship may be important mechanisms underlying the gender difference in orthostatic tolerance.  相似文献   

9.
We examined potential mechanisms (autonomic function, hypotension, and cerebral hypoperfusion) responsible for orthostatic intolerance following prolonged exercise. Autonomic function and cerebral hemodynamics were monitored in seven athletes pre-, post- (<4 h), and 48 h following a mountain marathon [42.2 km; cumulative gain approximately 1,000 m; approximately 15 degrees C; completion time, 261 +/- 27 (SD) min]. In each condition, middle cerebral artery blood velocity (MCAv), blood pressure (BP), heart rate (HR), and cardiac output (Modelflow) were measured continuously before and during a 6-min stand. Measurements of HR and BP variability and time-domain analysis were used as an index of sympathovagal balance and baroreflex sensitivity (BRS). Cerebral autoregulation was assessed using transfer-function gain and phase shift in BP and MCAv. Hypotension was evident following the marathon during supine rest and on standing despite increased sympathetic and reduced parasympathetic control, and elevations in HR and cardiac output. On standing, following the marathon, there was less elevation in normalized low-frequency HR variability (P < 0.05), indicating attenuated sympathetic activation. MCAv was maintained while supine but reduced during orthostasis postmarathon [-10.4 +/- 9.8% pre- vs. -15.4 +/- 9.9% postmarathon (%change from supine); P < 0.05]; such reductions were related to an attenuation in BRS (r = 0.81; P < 0.05). Cerebral autoregulation was unchanged following the marathon. These findings indicate that following prolonged exercise, hypotension and postural reductions in autonomic function or baroreflex control, or both, rather than a compromise in cerebral autoregulation, may place the brain at risk of hypoperfusion. Such changes may be critical factors in collapse following prolonged exercise.  相似文献   

10.
The heart rate variability estimation was used for autonomous regulation diagnostic in the 7-day head down bedrest experiment (HDBR). The new device "Pneumocard" and the fix respirations test were applied. The growth of sympathetic activity of autonomous nervous system and reduction of functional reserves of regulation mechanisms were observed in the microgravity modeling by HDBR. The analysis of the individual data had shown, that at two volunteers with most significant growth of SI after the experiment the orthostatic intolerance was observed. The data received in experiment confirm a hypothesis that growth of sympathetic activity in microgravity is accompanied by reduction of regulation mechanisms functional reserves is prognostic unfavorable.  相似文献   

11.
We tested the hypothesis that women have blunted sympathetic neural responses to orthostatic stress compared with men, which may be elicited under hypovolemic conditions. Muscle sympathetic nerve activity (MSNA) and hemodynamics were measured in eight healthy young women and seven men in supine position and during 6 min of 60 degrees head-up tilt (HUT) under normovolemic and hypovolemic conditions (randomly), with approximately 4-wk interval. Acute hypovolemia was produced by diuretic (furosemide) administration approximately 2 h before testing. Orthostatic tolerance was determined by progressive lower body negative pressure to presyncope. We found that furosemide produced an approximately 13% reduction in plasma volume, causing a similar increase in supine MSNA in men and women (mean +/- SD of 5 +/- 7 vs. 6 +/- 5 bursts/min; P = 0.895). MSNA increased during HUT and was greater in the hypovolemic than in the normovolemic condition (32 +/- 6 bursts/min in normovolemia vs. 44 +/- 15 bursts/min in hypovolemia in men, P = 0.055; 35 +/- 9 vs. 45 +/- 8 bursts/min in women, P < 0.001); these responses were not different between the genders (gender effect: P = 0.832 and 0.814 in normovolemia and hypovolemia, respectively). Total peripheral resistance increased proportionately with increases in MSNA during HUT; these responses were similar between the genders. However, systolic blood pressure was lower, whereas diastolic blood pressure was similar in women compared with men during HUT, which was associated with a smaller stroke volume or stroke index. Orthostatic tolerance was lower in women, especially under hypovolemic conditions. These results indicate that men and women have comparable sympathetic neural responses during orthostatic stress under normovolemic and hypovolemic conditions. The lower orthostatic tolerance in women is predominantly because of a smaller stroke volume, presumably due to less cardiac filling during orthostasis, especially under hypovolemic conditions, which may overwhelm the vasomotor reserve available for vasoconstriction or precipitate neurally mediated sympathetic withdrawal and syncope.  相似文献   

12.
To assess if propranolol influences orthostatic intolerance induced by prolonged bed rest (BR), a lower body negative pressure test (LBNP) and left ventricular (LV) echocardiography before and during -40mmHg of LBNP were performed with and without intravenous propranolol administration (0.04mg/kg) in 9 healthy volunteers (mean age: 21 years) before and after 20 days BR. LBNP tolerance time (LBNP-T), endpoint heart rate(HR), and percentage changes from 0 to -40mmHg LBNP in HR, LV diastolic dimension(LVDd), stroke volume (SV), cardiac output (CO), and systemic vascular resistance(SVR) were measured. After BR, percentage changes in CO during LBNP was not altered by propranolol (-12+/-21% vs. -24+/-24%; with and without propranolol; p>0.05) because the effect on percentage changes in HR (18+/-11% vs. 26+/-12%; p<0.05) cancelled out the effects of percentage changes in LVDd (-9+/-6% vs. -15+/-10%; p<0.05) and percentage changes in SV (-26+/-16% vs. -39+/-22%; p<0.05). In addition, propranolol decreased end-point HR (85+/-15bpm vs. 119+/-l4bpm; p<0.05) and percentage changes in SVR (25+/-32% vs. 53+/-57%; p<0.05). As a result, LBNP-T after BR was unchanged by propranolol (8.8+/-3.3min vs. 10.8+/-5.0min; p>0.05). In conclusion, propranolol failed to change orthostatic intolerance induced by BR.  相似文献   

13.
The purpose of this study was to test the hypothesis that plasma galanin concentration (pGal) is regularly increased in healthy humans with extensive orthostatic stress. Twenty-six test persons (14 men, 12 women) were brought to an orthostatic end point via a progressive cardiovascular stress (PCS) protocol consisting of 70 degrees head-up tilt plus increasing levels of lower body negative pressure until either hemodynamically defined presyncope or other signs of orthostatic intolerance occurred (nausea, clammy skin, excessive sweating, pallor of the skin). We further tested for possible gender, gravitational, and muscular training influences on plasma pGal responses: PCS was applied before and after 3 wk of daily vertical acceleration exposure training on a Human Powered Centrifuge. Test persons were randomly assigned to active (with bicycle work) or passive (without work) groups (seven men, six women in each group). Resting pGal was 26+/-3 pg/ml in men and 39+/-15 pg/ml in women (not significant); women had higher galanin responses (4.9-fold increase) than men (3.5-fold, P=0.017) to PCS exposure. Overall, PCS increased pGal to 186+/-5 pg/ml (P=0.0003), without significant differences between presyncope vs. orthostatic intolerance, pre- vs. postcentrifuge, or active vs. passive gravitational training. Increases in pGal were poorly related to synchronous elevations in plasma vasopressin. We conclude that galanin is regularly increased in healthy humans under conditions of presyncopal orthostatic stress, the response being independent of gravity training but larger in women than in men.  相似文献   

14.
We studied three groups of eight men each--high, mid, and low fit (peak O2 consumption 60.0 +/- 0.8, 48.9 +/- 1.0, and 35.7 +/- 0.9 ml.min-1.kg-1)--to determine the mechanism of orthostatic intolerance in endurance athletes. Tolerance was defined by progressive lower body negative pressure (LBNP) to presyncope. Maximal calf vascular conductance (Gmax) was measured. The carotid baroreflex was characterized using both stepwise R-wave-triggered and sustained (2 min) changes in neck chamber pressure. High-fit subjects tended to have lower LBNP tolerance than mid- and low-fit subjects but similar baroreflex responses. Subjects with poor LBNP tolerance had larger stroke volumes (SV) (120 +/- 6 vs. 103 +/- 3 ml) and greater decline in SV with LBNP to -40 mmHg (40 +/- 2 vs. 26 +/- 4%). Stepwise multiple linear regression analysis revealed that Gmax and steady-state gain of the carotid baroreflex contributed significantly toward explaining interindividual variations in LBNP tolerance. Thus endurance athletes may have decreased LBNP tolerance, but apparently not as a simple linear function of aerobic fitness. Orthostatic tolerance depends on complex interactions among functional characteristics that appear both related (Gmax and SV) and unrelated (baroreflex function) to fitness or exercise training.  相似文献   

15.
Orthostatic intolerance affects an estimated 1 in 500 persons and causes a wide range of disabilities. After essential hypertension, it is the most frequently encountered dysautonomia, accounting for the majority of patients referred to centers specializing in autonomic disorders. Patients are typically young females with symptoms such as dizziness, visual changes, head and neck discomfort, poor concentration, fatigue, palpitations, tremulousness, anxiety, and, in some cases, syncope. Syncope is the most hazardous symptom of orthostatic intolerance, presumably occurring because of impaired cerebral perfusion and in part to compensatory autonomic mechanisms. The etiology of this syndrome is still unclear but is heterogeneous. Orthostatic intolerance used to be characterized by an overall enhancement of noradrenergic tone at rest in some patients and by a patchy dysautonomia of postganglionic sympathetic fibers with a compensatory cardiac sympathetic activation in others. However, recent advances in molecular genetics are improving our understanding of orthostatic intolerance, such as several genetic diseases (such as Ehler-Danlos syndrome and norepinephrine transporter deficiency) presenting with symptoms typical of orthostatic intolerance. Future work will include investigation of genetic functional mutations underlying interindividual differences in autonomic cardiovascular control, body fluid regulation, and vascular regulation in orthostatic intolerance patients. The goal of this review article is to describe recent advances in understanding the pathophysiological mechanisms of orthostatic intolerance and their clinical significance.  相似文献   

16.
Hypohydration is associated with orthostatic intolerance; however, little is known about cerebrovascular mechanisms responsible. This study examined whether hypohydration reduces cerebral blood flow velocity (CBFV) in response to an orthostatic challenge. Eight subjects completed four orthostatic challenges (temperate conditions) twice before (Pre-EU and Pre-Hyp) and following recovery from passive heat stress ( approximately 3 h at 45 degrees C, 50% relative humidity, 1 m/s air speed) with (Post-EU) or without (Post-Hyp) fluid replacement of sweat losses (-3% body mass loss). Measurements included CBFV, mean arterial pressure (MAP), heart rate (HR), end-tidal CO(2), and core and skin temperatures. Test sessions included being seated (20 min) followed by standing (60 s) then resitting (60 s) with metronomic breathing (15 breaths/min). CBFV and MAP responses to standing were similar during Pre-EU and Pre-Hyp. Standing Post-Hyp exacerbated the magnitude (-28.0 +/- 1.4% of baseline) and duration (9.0 +/- 1.6 s) of CBFV reductions and increased cerebrovascular resistance (CVR) compared with Post-EU (-20.0 +/- 2.1% and 6.6 +/- 0.9 s). Standing Post-EU also resulted in a reduction in CBFV, and a smaller decrease in CVR compared with Pre-EU. MAP decreases were similar for Post-EU (-18 +/- 4 mmHg) and Post-Hyp (-21 +/- 5 mmHg) from seated to standing. These data demonstrate that despite similar MAP decreases, hypohydration, and prior heat stress (despite apparent recovery) produce greater CBFV reduction when standing. These observations suggest that hypohydration and prior heat stress are associated with greater reductions in CBFV with greater CVR, which likely contribute to orthostatic intolerance.  相似文献   

17.
We tested the hypothesis that sympathoadrenal activity in humans is low during spaceflight and that this effect can be simulated by head-down bed rest (HDBR). Platelet norepinephrine and epinephrine were measured as indexes of long-term changes in sympathoadrenal activity. Ten normal healthy subjects were studied before and during HDBR of 2-wk duration, as well as during an ambulatory study period of a similar length. Platelet norepinephrine concentrations (half-life = 2 days) were studied in five cosmonauts, 2 wk before launch, within 12 h after landing after 11-12 days of flight, and at least 2 wk after return to Earth. Because of the long half-life of platelet norepinephrine, data obtained early after landing would still reflect the microgravity state. Platelet norepinephrine decreased markedly during HDBR (P < 0.001), whereas there were no significant changes when subjects were ambulatory. Platelet epinephrine did not change during HDBR. During microgravity, platelet norepinephrine and epinephrine increased in four of the five cosmonauts. Platelet norepinephrine concentrations expressed in percentage of preflight and pre-HDBR values, respectively, were significantly different during microgravity compared with HDBR [153 +/- 28% (mean +/- SE) vs. 60 +/- 6%, P < 0.004]. Corresponding values for platelet epinephrine were also significant (293 +/- 85 vs. 90 +/- 12%, P < 0.01). The mechanism of the platelet norepinephrine and epinephrine response during spaceflight flight is most likely related to the concomitant decrease in plasma volume. HDBR cannot be applied to simulate changes in sympathoadrenal activity during microgravity.  相似文献   

18.
The purpose of the present study is to examine the changes in the arterial baroreflex control of muscle sympathetic nerve activity (MSNA) after head-down bed rest (HDBR), in relation to orthostatic hypotension after HDBR. Therefore, we performed 60 degrees head-up tilt (HUT) tests before and after 14 days of HDBR, with monitoring MSNA, heart rate and blood pressure. We calculated the gain of the arterial baroreflex control of MSNA, and compared the gains between the subjects who did (defined as the fainters) and those who did not (defined as the nonfainters) become presyncopal in HUT tests after HDBR.  相似文献   

19.
WISE-2005 studied 24 women during a 60-day head down bed rest (HDBR) who look part in an exercise countermeasure (LBNP-treadmill plus flywheel, EX) and no-exercise (No-EX). We conducted a series of experiments to explore changes in cardiovascular function and the ability of EX to prevent these changes. Resting arterial diameter in the arm was not affected but the leg arteries (femoral and popliteal) were significantly reduced in Np-EX, but was increased in EX. In this study we report on drug stimulated responses with sublingual nitroglycerin and infused isoproterenol. Heart rate increased in response to nitroglycerin with larger increases in No-EX after HDBR. Likewise during isoproterenol infusion the HR increase was greater after HDBR in the No-EX group. In all cases, the higher HR was associated with lower stroke volume in No-EX while stroke volume was protected in EX. These data do not support a change in sensitivity of beta-adrenergic receptors after HDBR. The leg vascular resistance decreased in response to isoproterenol and it decreased to a greater extent in No-EX than EX. These data were consistent with observations of lower leg vascular resistance during orthostatic challenge tests after HDBR. We conclude that consistent changes in cardiovascular function in the No-EX were detected by different methods that point to mechanisms contributing to orthostatic intolerance after HDBR.  相似文献   

20.
We tested the hypothesis that hypotension occurred in older adults at the onset of orthostatic challenge as a result of vagal dysfunction. Responses of heart rate (HR) and mean arterial pressure (MAP) were compared between 10 healthy older and younger adults during onset and sustained lower body negative pressure (LBNP). A younger group was also assessed after blockade of the parasympathetic nervous system with the use of atropine or glycopyrrolate and after blockade of the beta(1)-adrenoceptor by use of metoprolol. Baseline HR (older vs. younger: 59 +/- 4 vs. 54 +/- 1 beats/min) and MAP (83 +/- 2 vs. 89 +/- 3 mmHg) were not significantly different between the groups. During -40 Torr, significant tachycardia occurred at the first HR response in the younger subjects without hypotension, whereas significant hypotension [change in MAP (DeltaMAP) -7 +/- 2 mmHg] was observed in the elderly without tachycardia. After the parasympathetic blockade, tachycardiac responses of younger subjects were diminished and associated with a significant hypotension at the onset of LBNP. However, MAP was not affected after the cardiac sympathetic blockade. We concluded that the elderly experienced orthostatic hypotension at the onset of orthostatic challenge because of a diminished HR response. However, an augmented vasoconstriction helped with the maintenance of their blood pressure during sustained LBNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号