首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Urease defective mutants in Neurospora crassa   总被引:2,自引:0,他引:2  
Summary A method for isolating urease mutants was developed. It is based on the use of microconidial strains with small and compact colonies. Mutants are detected by their inability to change the color of a pH indicator when they are brought in contact with a solution of urea. The assay is performed in the absence of growth conditions so that the colonies remain separate. Two isolated urease mutants are unable to grow on urea as the sole source of nitrogen, but grow as well as the wild type on other sources of nitrogen. The same two mutants give rise to different acidities in liquid growth medium. The two mutants are also genetically different (K?lmark, 1969 b). The finding that two genetically and physiologically distinct loci participate in the control of one enzyme is discussed.  相似文献   

4.
5.
6.
Summary Nuclease halo (nuh) mutants of the ascomycete Neurospora crassa have been isolated which are characterized reduced release of deoxyribonuclease (DNase) activities from colonies grown on sorbose-containing agar media. To identify nuh mutants, mutagenized isolates were transferred to commercial DNase test agar, or grown on minimal medium and then overlayed with agar that contained heat-denatured DNA. DNase activity was visualized by acid precipitation which produced clear rings of digestion (haloes) around the colonies.To identify the number of genes in which mutations lead to reduced release of nuclease activity, eleven nuh mutants were checked for close linkage and linked pairs were tested for complementation. These mutants were assigned to eight genes, and all except one were mapped in six small regions of the Neurospora linkage maps. In addition, among a large number of existing mutants which were tested for nuclease haloes, two mutants were found that showed the Nuh phenotype, namely uvs-3 and uvs-6. One of the isolated nuh mutants was also found to be sensitive to UV and was mapped close to uvs-3; it may represent a new allele of this gene.As a first step towards identification of genuine nuclease mutants, extensively backcrossed strains of mutants from different genes have been assayed for nuclease activity with denatured DNA in extracts. A pronounced reduction, compared to wild type at the same stage of growth, was found in uvs-3 and also in nuh-3, a mutant that is not UV-sensitive.  相似文献   

7.
Neurospora crassa mutants deficient in asparagine synthetase   总被引:1,自引:0,他引:1  
Neurospora crassa mutants deficient in asparagine synthetase were selected by using the procedure of inositol-less death. Complementation tests among the 100 mutants isolated suggested that their alterations were genetically allelic. Recombination analysis with strain S1007t, an asparagine auxotroph, indicated that the mutations were located near or within the asn gene on linkage group V. In vitro assays with a heterokaryon indicated that the mutation was dominant. Thermal instability of cell extracts from temperature-sensitive strains in an in vitro asparagine synthetase assay determined that the mutations were in the structural gene(s) for asparagine synthetase.  相似文献   

8.
Summary Heteroplasmons with normal growth rates are formed when the slow-growing, female fertile, group I or II extranuclear mutants of Neurospora crassa are combined by forced heterokaryosis with the female sterile, stopper mutants of group III. Different mutants from the same growth and fertility group do not complement each other, and the poky-like strains of group I do not interact synergistically with [mi-3], the only known group II mutant. The mitochondrial cytochrome system of the complementing heteroplasmons are as abnormal as the cytochrome complements of the component extranuclear mutants, indicating that defects in the electron transport system represented by those mutants are related inconsequentially to growth. The observed functional complementation indicates the expression of the mitochondrial genome is not restricted to the specific organelle of which it is a part.Contribution No. 1255 Department of Agronomy; Contribution No. 1148, Division of Biology, Kansas Agriculture Experiment Station, Manhattan, Kansas.  相似文献   

9.
Two auxotrophs of Neurospora crassa have been isolated that give a positive growth response to putrescine, spermidine or spermine. One of the mutants is deficient in ornithine decarboxylase activity and has been designated put-1. Both mutants map on linkage group VR, fail to complement and are infertile when crossed to one another, indicating that they are probably alleles. A putrescine auxotroph is incapable of suppressing a pro-4 mutant. The isolation of the mutants confirms that putrescine is an essential factor for the normal growth of the organism, and is synthesized via a single pathway in Neurospora.  相似文献   

10.
11.
Genetic studies of urease mutants in Neurospora crassa   总被引:5,自引:0,他引:5  
  相似文献   

12.
Neurospora crassa has 10 mapped supersuppressor (ssu) genes. In vivo studies indicate that they suppress amber (UAG) premature termination mutations but the spectrum of their functions remains to be elucidated. We examined seven ssu strains (ssu-1, -2, -3, -4, -5, -9, and -10) using cell-free translation extracts. We tested suppression by requiring it to produce firefly luciferase from a reading frame containing premature UAA, UGA, or UAG terminators. All mutants except ssu-3 suppressed UAG codons. Maximal UAG suppression ranged from 15% to 30% relative to controls containing sense codons at the corresponding position. Production from constructs containing UAA or UGA was 1-2%, similar to levels observed with all nonsense codons in wild-type and ssu-3 extracts. UAG suppression was also seen using [35S]Met to radiolabel polypeptides. Suppression enabled ribosomes to continue translation elongation as determined using the toeprint assay. tRNA from supersuppressors showed suppressor activity when added to wild-type extracts. Thus, these supersuppressors produce amber suppressor tRNA.  相似文献   

13.
14.
A p-fluorophenylalanine-resistant mutant (acc phe ) which grows on minimal medium has an altered prephenate dehydrogenase and maps at the try-1 locus. Two other tyr-1 mutants which require tyrosine for normal growth can eventually grow on minimal or minimal plus p-fluorophenylalanine (FPA). The three different tyr-1 mutants all accumulate phenylalanine when incubated in minimal medium. FPA is incorporated into protein at only 10–15% the wild-type rate when mutant conidia are incubated in a minimal salts-glucose system. Under the same conditions, phenylalanine incorporation in the mutants is initially the same as in wild type. When tyrosine is included in the medium, resistance to FPA is lost, phenylalanine accumulation is prevented, and FPA is incorporated into protein at the wild-type rate. Tyrosine apparently prevents the overproduction of phenylalanine by preventing the overproduction of chorismate and prephenate.This work was supported, in part, by an Atomic Energy Commission grant to the Institute of Molecular Biophysics, the Florida State University, and by the Genetics Training Grant, funded by the National Institute of Health. It contains, in part, data from the doctoral thesis of the senior author, who was supported by a Florida State University Nuclear Fellowship and by a Public Health Service Fellowship.  相似文献   

15.
Biochemical basis of radiation-sensitivity in mutants of Neurospora crassa   总被引:2,自引:0,他引:2  
The available UV-sensitive mutants of Neurospora crassa were examined for their ability to excise and photoreactive cytosine-containing dimers invivo. All strains exhibited in vivo photoreactivation, including upr-1, which was originally thought to be deficient in photoreactivation. Two strains, uvs-2 and upr-1 were shown to be deficient in excision repair; uvs-3 was shown to contain a residual amount of excision capabilit. The remaining strains, uvs-1, uvs-5, and uvs-6, were normal in their ability to excise dimers. Based on these results, tentative analogies were drawn between the Neurospora mutants and the known classes of UV-sensitive mutants in E. coli. Accordingly, the N. crassa mutants were classified as uvs-1, -lon; uvs-2, -uvr; uvs-3, -uvr (rec?); uvs-5, -lon; uvs-6, -rec; and upr-1, -uvr. A comparison was made between the biochemical responses and the available published data on mutation induction in the Neurospora mutants. Althoughsome relationships were seen between repair defects and mutation induction, too little data were available for any definitive conclusions.  相似文献   

16.
Unsaturated fatty acid (ufa) auxotrophs of Neurospora crassa were obtained by treatment of conidia with N-methyl-N'-nitro-N-nitrosoguanidine followed by isolation on media containing polyunsaturated fatty acids suspended in Tergitol NP-40. The 24 mutants for which reisolates were obtained from crosses with wild type were assigned to two complementation classes, ufa-1 and ufa-2, located on linkage group V. Unsaturated fatty acids with varying degrees of unsaturation, chain length, and double-bond position as well as different steric configurations were tested for growth requirements.  相似文献   

17.
18.
19.
This study identified and characterized four cadmium-resistant mutants of Neurospora crassa. One of these mutants maps to linkage group II and the other three map to linkage group VII, whereas a naturally occurring resistant trait in a strain from Japan resides at a distinct but unmapped locus. Transport of cadmium into Neurospora cells occurs by more than a single uptake system and involves both energy-dependent and -independent components. The resistant mutants transport cadmium in the same manner as does the cadmium-sensitive wild-type strain. Cadmium resistance in these mutants does not appear to result from an increase in cytosolic heat-stable cadmium-binding proteins. Cadmium does not induce the typical heat-shock response in conidia. Under various growth conditions, each of the mutants exhibited morphological alterations, possibly involving the cell wall or plasma membrane.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号