首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax) is a member of the Bcl-2 protein family having a pivotal role in triggering cell commitment to apoptosis. Bax is latent and monomeric in the cytosol but transforms into its lethal, mitochondria-embedded oligomeric form in response to cell stress, leading to the release of apoptogenic factors such as cytochrome C. Here, we dissected the structural correlates of Bax membrane insertion while oligomerization is halted. This strategy was enabled through the use of nanometer-scale phospholipid bilayer islands (nanodiscs) the size of which restricts the reconstituted system to single Bax-molecule activity. Using this minimal reconstituted system, we captured structural correlates that precede Bax homo-oligomerization elucidating previously inaccessible steps of the core molecular mechanism by which Bcl-2 family proteins regulate membrane permeabilization. We observe that, in the presence of BH3 interacting domain death agonist (Bid) BH3 peptide, Bax monomers induce the formation of ∼3.5-nm diameter pores and significantly distort the phospholipid bilayer. These pores are compatible with promoting release of ions as well as proteinaceous components, suggesting that membrane-integrated Bax monomers in the presence of Bid BH3 peptides are key functional units for the activation of the cell demolition machinery.  相似文献   

2.
在电镜下观察了洋葱(Allium cepa L.)根端分生组织细胞核的连续切片并进行了三维重组。发现:1. 类胀泡结构在细胞核中的数目与二倍染色体数有较大差异。在所观察的S期细胞核中,该结构数为4—10 个;在所观察的G2 期细胞核中,该结构数为4—9 个。2. 类胀泡结构的体积变化比较大,大多数的体积在0.1—0.4 μm 3 之间。不同的S期细胞核中,类胀泡结构总体积较大者是总体积较小者的1.8 倍;不同的G2 期细胞核中,类胀泡结构总体积较大者是总体积较小者的2.1 倍。3. 类胀泡结构有集中分布在细胞核内一定区域的倾向。讨论了类胀泡结构是否为着丝粒等问题  相似文献   

3.
电子显微三维重构技术发展与前沿   总被引:2,自引:0,他引:2  
本文对电子显微三维重构技术(也称电镜三维重构,electron microscopy 3D reconstruction)进行简要介绍,并在此基础上对该技术当前研究的发展和前沿进行综述,包括高分辨率电镜三维重构、仪器设备性能突破、自动化数据收集和处理、高性能计算技术应用、二/三维图像处理技术的发展和创新、基于三维重构图的模型计算等方面,最后对电子显微三维重构技术的未来进行了展望。  相似文献   

4.

Background

Since the introduction of what became today's standard for cryo-embedding of biological macromolecules at native conditions more than 30 years ago, techniques and equipment have been drastically improved and the structure of biomolecules can now be studied at near atomic resolution by cryo-electron microscopy (cryo-EM) while capturing multiple dynamic states. Here we review the recent progress in cryo-EM for structural studies of dynamic biological macromolecules.

Scope of review

We provide an overview of the cryo-EM method and introduce contemporary studies to investigate biomolecular structure and dynamics, including examples from the recent literature.

Major conclusions

Cryo-EM is a powerful tool for the investigation of biological macromolecular structures including analysis of their dynamics by using advanced image-processing algorithms. The method has become even more widely applicable with present-day single particle analysis and electron tomography.

General significance

The cryo-EM method can be used to determine the three-dimensional structure of biomacromolecules in near native condition at close to atomic resolution, and has the potential to reveal conformations of dynamic molecular complexes. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.  相似文献   

5.
A 26 Å resolution map of the structure of human low-density lipoprotein (LDL) was obtained from electron cryomicroscopy and single-particle image reconstruction. The structure showed a discoidal-shaped LDL particle with high-density regions mainly distributed at the edge of the particle and low-density regions at the flat surface that covers the core region. To determine the chemical components that correspond to these density regions and to delineate the distribution of protein and phospholipid located at the particle surface at the resolution of the map, we used Mono-Sulfo-NHS-Undecagold labeling to increase preferentially the contrast of the apolipoprotein B component on the LDL particle. In the three-dimensional map from the image reconstruction of the undecagold-labeled LDL particles, the high-density region from the undecagold label was distributed mainly at the edge of the particle, and lower density regions were found at the flat surfaces that cover the neutral lipid core. This suggests that apolipoprotein B mainly encircles LDL at the edge of the particle and the phospholipid monolayers are located at the flat surfaces, which are parallel to the cholesterol ester layers in the core and may interact with the core lipid layers through the acyl chains.  相似文献   

6.
Phage D10, an O1 El Tor tying vibriophage, has been successfully employed to tract the outspread of cholera epidemic. Using Transmission Electron Microscopy and computational image analysis, we have determined the structures of the capsid, head-to-tail connector, the contractile helical tail, the baseplate and combined them to form the complete three-dimensional (3D) D10 phage structure. Using partial denaturation experiments on the genome and using the computed 3D structure of the phage, we have established the packing of the genome ends inside the capsid together with the release styles during the phage infection, respectively. Finally, using the 3D density maps of the different components of the D10 phage, we have presented a simplified picture of morphogenesis of the D10 vibriophage. Using the complete assembled structure of the D10 phage, we have traced the path of the phage genome during the infection process, all the way from the phage head down the tail tube of the tail to the top of the baseplate. To the best of our knowledge, this is first structural study for a long-tailed vibriophage. We have tabulated the structural features of the different components of the phages belonging to the Myoviridae and Siphoviridae. The comparative study suggested the possibility of a common origin of the bacteriophages, irrespective of belonging to different groups and species.  相似文献   

7.
The mechanisms underlying hepatitis C virus (HCV) morphogenesis remain elusive, but lipid droplets have recently been shown to be important organelles for virus production. We investigated the interaction between HCV-like particles and lipid droplets by three-dimensional reconstructions of serial ultrathin electron microscopy sections of cells producing the HCV core protein. The budding of HCV-like particles was mostly initiated at membranes close to the lipid droplets rather than at membranes directly apposed to the lipid droplets. This may have important implications for our understanding of the complex relationship between HCV and lipids and may make easier to dissect out the HCV life cycle.  相似文献   

8.
    
The objective of this paper was to integrate excavation and post‐processing of archaeological and osteological contexts and material to enhance the interpretation of these with specific focus on the taphonomical aspects. A method was designed, Virtual Taphonomy, based on the use and integration of image‐based 3D modeling techniques into a 3D GIS platform, and tested on a case study. Merging the 3D models and a database directly in the same virtual environment allowed the authors to fully integrate excavation and post‐processing in a complex spatial analysis reconnecting contexts excavated on different occasions in the field process. The case study further demonstrated that the method enabled a deeper understanding of the taphonomic agents at work and allowed the construction of a more detailed interpretation of the skeletal remains than possible with more traditional methods. The method also proved to add transparency to the entire research process from field to post‐processing and interpretation. Other benefits were the timesaving aspects in documentation, not only in the excavation process but also in post‐processing without creating additional costs in material, as the equipment used is available in most archaeological excavations. The authors conclude that this methodology could be employed on a variety of investigations from archaeological to forensic contexts and add significant value in many different respects (for example, detail, objectivity, complexity, time‐efficiency) compared to methods currently used. Am J Phys Anthropol 157:305–321, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
Aminoacylase III (AAIII) plays an important role in deacetylation of acetylated amino acids and N-acetylated S-cysteine conjugates of halogenated alkenes and alkanes. AAIII, recently cloned from mouse kidney and partially characterized, is a mixture of tetramers and dimers. In the present work, AAIII dimers were purified and shown to be enzymatically active. Limited trypsinolysis showed two domains of approximately 9 and 25 kDa. The three-dimensional structure of the dimer was studied by electron microscopy of negative stained samples and by single-particle reconstruction. A 16A resolution model of the AAIII dimer was created. It has an unusual, cage-like, structure. A realistic AAIII tetramer model was built from two dimers.  相似文献   

10.
The ability of cells to maintain low levels of Ca2+ under resting conditions and to create rapid and transient increases in Ca2+ upon stimulation is a fundamental property of cellular Ca2+ signaling mechanism. An increase of cytosolic Ca2+ level in response to diverse stimuli is largely accounted for by the inositol 1,4,5-trisphosphate receptor (IP3R) present in the endoplasmic reticulum membranes of virtually all eukaryotic cells. Extensive information is currently available on the function of IP3Rs and their interaction with modulators. Very little, however, is known about their molecular architecture and therefore most critical issues surrounding gating of IP3R channels are still ambiguous, including the central question of how opening of the IP3R pore is initiated by IP3 and Ca2+. Membrane proteins such as IP3R channels have proven to be exceptionally difficult targets for structural analysis due to their large size, their location in the membrane environment, and their dynamic nature. To date, a 3D structure of complete IP3R channel is determined by single-particle cryo-EM at intermediate resolution, and the best crystal structures of IP3R are limited to a soluble portion of the cytoplasmic region representing ∼15% of the entire channel protein. Together these efforts provide the important structural information for this class of ion channels and serve as the basis for further studies aiming at understanding of the IP3R function.  相似文献   

11.
Abstract

In this paper, we proposed a 3-D graphical representation of RNA secondary structures. Based on this representation, we outline an approach by constructing a 3-component vector whose components are the normalized leading eigenvalues of the L/L matrices associated with RNA secondary structure. The examination of similarities/dissimilarities among the secondary structure at the 3′-terminus of different viruses illustrates the utility of the approach.  相似文献   

12.
    
In musculoskeletal models of the human temporomandibular joint (TMJ), muscles are typically represented by force vectors that connect approximate muscle origin and insertion centroids (centroid-to-centroid force vectors). This simplification assumes equivalent moment arms and muscle lengths for all fibers within a muscle even with complex geometry and may result in inaccurate estimations of muscle force and joint loading. The objectives of this study were to quantify the three-dimensional (3D) human TMJ muscle attachment morphometry and examine its impact on TMJ mechanics. 3D muscle attachment surfaces of temporalis, masseter, lateral pterygoid, and medial pterygoid muscles of human cadaveric heads were generated by co-registering measured attachment boundaries with underlying skull models created from cone-beam computerized tomography (CBCT) images. A bounding box technique was used to quantify 3D muscle attachment size, shape, location, and orientation. Musculoskeletal models of the mandible were then developed and validated to assess the impact of 3D muscle attachment morphometry on joint loading during jaw maximal open-close. The 3D morphometry revealed that muscle lengths and moment arms of temporalis and masseter muscles varied substantially among muscle fibers. The values calculated from the centroid-to-centroid model were significantly different from those calculated using the ‘Distributed model’, which considered crucial 3D muscle attachment morphometry. Consequently, joint loading was underestimated by more than 50% in the centroid-to-centroid model. Therefore, it is necessary to consider 3D muscle attachment morphometry, especially for muscles with broad attachments, in TMJ musculoskeletal models to precisely quantify the joint mechanical environment critical for understanding TMJ function and mechanobiology.  相似文献   

13.
    
Cryo-electron microscopy and three-dimensional image reconstruction are powerful tools for analyzing icosahedral virus capsids at resolutions that now extend below 1 nm. However, the validity of such density maps depends critically on correct identification of the viewing geometry of each particle in the data set. In some cases-for example, round capsids with low surface relief-it is difficult to identify orientations by conventional application of the two most widely used approaches-\"common lines\" and model-based iterative refinement. We describe here a strategy for determining the orientations of such refractory specimens. The key step is to determine reliable orientations for a base set of particles. For each particle, a list of candidate orientations is generated by common lines: correct orientations are then identified by computing a single-particle reconstruction for each candidate and then systematically matching their reprojections with the original images by visual criteria and cross-correlation analysis. This base set yields a first-generation reconstruction that is fed into the model-based procedure. This strategy has led to the structural determination of two viruses that, in our hands, resisted solution by other means.  相似文献   

14.
    
Recent advances in electron microscopy and image analysis techniques have resulted in the development of tomography, which makes possible the study of structures neither accessible to X-ray crystallography nor nuclear magnetic resonance. However, the use of tomography to study biological structures, ranging from 100 to 500 nm, requires developments in sample preparation and image analysis. Indeed, cryo-electron tomography present two major drawbacks: the low contrast of recorded images and the sample radiation damage. In the present work we have tested, on T4 bacteriophage samples, the use of a new preparation technique, cryo-negative staining, which reduces the radiation damage while preserving a high signal-to-noise ratio. Our results demonstrate that the combination of cryo-negative staining in tomography with standard cryo-microscopy and single particle analysis results in a methodological approach that could be useful in the study of biological structures ranging in the T4 bacteriophage size.  相似文献   

15.
16.
Abstract

Using primary and secondary structure information of an RNA molecule, the program RNA2D3D automatically and rapidly produces a first-order approximation of a 3-dimensional conformation consistent with this information. Applicable to structures of arbitrary branching complexity and pseudoknot content, it features efficient interactive graphical editing for the removal of any overlaps introduced by the initial generating procedure and for making conformational changes favorable to targeted features and subsequent refinement. With emphasis on fast exploration of alternative 3D conformations, one may interactively add or delete base-pairs, adjacent stems can be coaxially stacked or unstacked, single strands can be shaped to accommodate special constraints, and arbitrary subsets can be defined and manipulated as rigid bodies. Compaction, whereby base stacking within stems is optimally extended into connecting single strands, is also available as a means of strategically making the structures more compact and revealing folding motifs. Subsequent refinement of the first-order approximation, of modifications, and for the imposing of tertiary constraints is assisted with standard energy refinement techniques. Previously determined coordinates for any part of the molecule are readily incorporated, and any part of the modeled structure can be output as a PDB or XYZ file. Illustrative applications in the areas of ribozymes, viral kissing loops, viral internal ribosome entry sites, and nanobiology are presented.  相似文献   

17.
Helical reconstruction from electron cryomicrographs has become a routine technique for macromolecular structure determination of helical assemblies since the first days of Fourier-based three-dimensional image reconstruction. In the past decade, the single-particle technique has had an important impact on the advancement of helical reconstruction. Here, we present the software package SPRING that combines Fourier based symmetry analysis and real-space helical processing into a single workflow. One of the most time-consuming steps in helical reconstruction is the determination of the initial symmetry parameters. First, we propose a class-based helical reconstruction approach that enables the simultaneous exploration and evaluation of many symmetry combinations at low resolution. Second, multiple symmetry solutions can be further assessed and refined by single-particle based helical reconstruction using the correlation of simulated and experimental power spectra. Finally, the 3D structure can be determined to high resolution. In order to validate the procedure, we use the reference specimen Tobacco Mosaic Virus (TMV). After refinement of the helical symmetry, a total of 50,000 asymmetric units from two micrographs are sufficient to reconstruct a subnanometer 3D structure of TMV at 6.4 Å resolution. Furthermore, we introduce the individual programs of the software and discuss enhancements of the helical reconstruction workflow. Thanks to its user-friendly interface and documentation, SPRING can be utilized by the novice as well as the expert user. In addition to the study of well-ordered helical structures, the development of a streamlined workflow for single-particle based helical reconstruction opens new possibilities to analyze specimens that are heterogeneous in symmetries.  相似文献   

18.
    
Purpose: For our research on computer-optimised and automated cochlear implant surgery, we pursue a model-based approach to overcome the limitations of currently available clinical imaging modalities. A serial cross section preparation procedure has been developed and evaluated concerning accuracy to serve for modelling of a digital anatomic atlas to make delicate soft tissue structures available for pre-operative planning.

Methods: A special grinding tool was developed allowing the setting of a specific amount of abrasion as equidistant slice thickness was considered a crucial step. Additionally, each actual abrasion was accurately measured and used during three-dimensional reconstruction of the serial cross-sectional images obtained via digital photo documentation after each microgrinding step. A well-known reference object was prepared using this procedure and evaluated in terms of accuracy.

Results: Reconstruction of the whole sample was achieved with an error less than 0.4%, and the edge lengths in the direction of abrasion could be reconstructed with an average error of 0.6 ± 0.3 mm; both prove the realisation of equidistant abrasion. Using artificial registration fiducials and a custom-made algorithm for image alignment, parallelism and rectangularity could be preserved with average errors less than 0.4° ± 0.3°.

Conclusion: We present a systematic, practicable and reliable method for the geometrically accurate reconstruction of anatomical structures, which is especially suitable for the middle and inner ear anatomy including soft tissue structures. For the first time, the quality of such a reconstruction process has been quantified and successfully proven for its usability.  相似文献   

19.
    
The analysis of ultrathin serial sections as 3-dimensional (3D) information requires interpretation and display of a large amount of data. We suggest a simple way to solve this problem; it permits presentation of a series of sections as a 3D color image of good quality. It involves a picture system with specialized hardware and software written for this purpose. 3D images of cellular organelles have been drawn either by manually defining the contour of the objects or by thresholding of the volumes in the structures. These 2 methods allow rapid drawing of the image on the screen. It is possible to determine the position, shape and size of 3D structures. This interactive system allows the user to choose between several options: colors, removal of parts of the object, and cutout.  相似文献   

20.
We have used conical electron tomography in order to reconstruct neuronal organelles in thin sections of plastic embedded rat somato-sensory cortical tissue. The conical tilt series were collected at a 55 degrees tilt and at 5 degrees rotations, aligned using gold particles as fiduciary markers, and reconstructed using the weighted back projection algorithm. After a refinement process based on projection matching, the 3D maps showed the "unit membrane pattern" along the entire reconstructed volume. This pattern is indicative of the bilayer arrangement of phospholipids in biological membranes. Based on Fourier correlation methods as well as the visualization of the "unit membrane" pattern, we estimated resolutions of approximately 4 nm. To illustrate the prospective advantages of conical tomography, we segmented "coated" vesicles in the reconstructed volumes. These vesicles were comprised of a central core enclosing a small lumen, and a protein "coating" extending into the cytoplasm. The "coated" vesicle was attached to the plasma membrane through a complex structure shaped as an arch where the ends are attached to the membrane and the crook is connected to the vesicle. We concluded that conical electron tomography of thin-sectioned specimens provides a powerful experimental approach for studying thin-sectioned neuronal organelles at resolution levels of approximately 4 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号