首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Introduction

Post-traumatic arthritis (PTA) is a progressive, degenerative response to joint injury, such as articular fracture. The pro-inflammatory cytokines, interleukin 1(IL-1) and tumor necrosis factor alpha (TNF-α), are acutely elevated following joint injury and remain elevated for prolonged periods post-injury. To investigate the role of local and systemic inflammation in the development of post-traumatic arthritis, we targeted both the initial acute local inflammatory response and a prolonged 4 week systemic inflammatory response by inhibiting IL-1 or TNF-α following articular fracture in the mouse knee.

Methods

Anti-cytokine agents, IL-1 receptor antagonist (IL-1Ra) or soluble TNF receptor II (sTNFRII), were administered either locally via an acute intra-articular injection or systemically for a prolonged 4 week period following articular fracture of the knee in C57BL/6 mice. The severity of arthritis was then assessed at 8 weeks post-injury in joint tissues via histology and micro computed tomography, and systemic and local biomarkers were assessed in serum and synovial fluid.

Results

Intra-articular inhibition of IL-1 significantly reduced cartilage degeneration, synovial inflammation, and did not alter bone morphology following articular fracture. However, systemic inhibition of IL-1, and local or systemic inhibition of TNF provided no benefit or conversely led to increased arthritic changes in the joint tissues.

Conclusion

These results show that intra-articular IL-1, rather than TNF-α, plays a critical role in the acute inflammatory phase of joint injury and can be inhibited locally to reduce post-traumatic arthritis following a closed articular fracture. Targeted local inhibition of IL-1 following joint injury may represent a novel treatment option for PTA.  相似文献   

3.
4.
There are reports showing that pro-inflammatory cytokines are dysregulated in patients with Down's syndrome (DS). However, most of these reports concern adults. We analyzed cytokine levels in serum samples from children with DS, and compared them with samples from intellectually disabled (ID), and healthy, control children. Blood samples were collected from 24 DS, 24 age-/sex-matched ID, and 24 age-/sex-matched healthy, control children. Serum levels of the cytokines IL-5, IL-10, IL-13, IFN-γ, and TNF-α were measured using a sandwich ELISA method, . The age range of the children was 1-15 years, with a mean ± SD of 5.75 ± 4.36 years. TNF-α levels were significantly higher in the DS and ID groups compared with those found in healthy, control children (P<0.05). The DS and ID groups had significantly higher IFN-γ levels compared with healthy, control children (P = 0.0002 and P<0.01, respectively), with significant higher levels in the DS than the ID group (P<0.05). Serum from the ID group showed significantly higher IL-10 levels compared with those from the DS group (P<0.05), but not the healthy, control group. Significant correlations were found between the differences in TNF-α and IFN-γ levels, in both ID (rs = 0.558; P = 0.005) and DS children (rs = 0.405; P<0.05). There were no significant differences found in serum levels of IL-13 between the groups, and IL-5 was not detectable in any of the serum samples. Levels of TNF-α and IFN-γ were increased, and IL-10 decreased in serum from children with DS. It may be that these differences contribute to the clinical symptoms seen in DS: consequently, these pro-inflammatory cytokines might be useful as early biomarkers of the disorders associated with DS.  相似文献   

5.
Cavazza A  Marini M  Spagnoli GC  Roda LG 《Peptides》2008,29(11):1974-1981
The capacity of pro-inflammatory cytokines to modulate proteolysis was analyzed by liquid chromatography using human fibroblasts as cell model and enzyme source, and the immunodominant epitope gp100(280-288) (YLEPGPVTA) as substrate. The measurements made after fibroblast pre-incubation with either IL-1, TNF, or IL-6 plus its soluble receptors have been compared with those made with un-stimulated fibroblasts. The results obtained suggest an uneven association of cytokine treatment with substrate degradation, and with a prevailingly positive - but also negative - association with release of smaller peptides and free amino acids. Data obtained by separately measuring these two groups of by-products indicate that, after IL-1 cell pre-treatment, the velocity of formation of both groups of by-products increased, resulting in a net increase of substrate degradation. After TNF and IL-6 pre-treatment, the increase of one group was compensated by a decrease of the other group; specifically, the compensation was only partial for TNF, and overall substrate hydrolysis increased. In the case of IL-6, the increase of free amino acids was almost exactly compensated by a reduction of peptidic by-products, resulting in a negligible increase of substrate hydrolysis. In addition, the existence of reaction time-related modifications in the apparent velocity of substrate degradation and formation of by-products, allows hypothesizing different effects of cytokines on the enzymes degrading the substrate with different time constants. Taken together, these data can be interpreted as indicating different, positive and negative, effects of the three cytokines on the individual enzymes expressed by fibroblasts and capable of degrading peptidic substrates.  相似文献   

6.
Ege T  Canbaz S  Yuksel V  Duran E 《Cytokine》2003,23(1-2):47-51
We investigated the effects of pro-inflammatory cytokines of pericardial fluid on hemodynamic parameters in patients undergoing coronary artery surgery. Seventy-eight patients were included in the study and they were allocated to three groups: group 1, stable angina pectoris (SAP, n = 15); group 2, unstable angina pectoris (USAP, n = 34); group 3, post-myocardial infarction (PMI, n = 29). Pericardial fluid and arterial blood samples were obtained from all patients and interleukin (IL)-1beta, IL-2 receptor, IL-6, IL-8 and tumor necrosis factor-alpha (TNF-alpha) levels were measured. Pericardial IL-1beta concentration (pg/mL) was significantly higher in the USAP group (26.6 +/- 10.9) compared to the SAP (5.0 +/- 0.1) and PMI (5.8 +/- 1.0) groups. IL-2R, IL-6, IL-8 and TNF-alpha concentrations of pericardial fluid were significantly higher than serum in all groups; difference was more prominent in the PMI group compared to the SAP and the USAP groups. Serum IL-1beta concentrations (pg/mL) were significantly higher in the USAP group (21.8 +/- 3.4) compared to the SAP group (5.0 +/- 0.1) and the PMI group (5.4 +/- 1.6). Cardiac index (CI) before opening the pericardial sac was found to be lower in the USAP group (1.6 +/- 0.3 L/min/m2) compared to the SAP (2.2 +/- 0.5 L/min/m2) and the PMI (2.1 +/- 0.5 L/min/m2) groups (p = 0.028 and p = 0.011, respectively). In the USAP group, there was a relationship between reduction of CI and increase of IL-1beta levels in serum and pericardial fluid.  相似文献   

7.
Dysregulation of leptin associated with obesity is implicated in obesity-related colon cancer, but mechanisms are elusive. Increased adiposity and elevated plasma leptin are associated with perturbed metabolism in colon and leptin receptors are expressed on colon epithelium. We hypothesise that obesity increases the sensitivity of the colon to cancer by disrupting leptin-regulated gene targets within colon tissues. PCR arrays were used to firstly identify leptin responsive genes and secondly to identify responses to leptin challenge in wild-type mice, or those lacking leptin (ob/ob). Leptin-regulated genes were localised in the colon using in situ hybridisation. IL6, IL1β and CXCL1 were up-regulated by leptin and localised to discrete cells in gut epithelium, lamina propria, muscularis and at the peritoneal serosal surface. Leptin regulates pro-inflammatory genes such as IL6, IL1β and CXCL1, and might increase the risk of colon cancer among obese individuals.  相似文献   

8.
Vellaichamy E  Kaur K  Pandey KN 《Peptides》2007,28(4):893-899
Natriuretic peptide receptor-A (NPRA) is the principal receptor for the cardiac hormones ANP and BNP. Mice lacking NPRA develop progressive cardiac hypertrophy and congestive heart failure. However, the mechanisms responsible for hypertrophic growth in the absence of NPRA signaling are not yet known. In the present study, we determined whether deficiency of NPRA/cGMP signaling alters the cardiac pro-inflammatory cytokines gene expression in Npr1 (coding for NPRA) gene-knockout (Npr1(-/-)) mice exhibiting cardiac hypertrophy and fibrosis as compared with control wild-type (Npr1(+/+)) mice. A significant up-regulation of cytokine genes such as TNF-alpha (five-fold), IL-6 (three-fold) and TGF-beta1 (four-fold) were observed in mutant mice hearts lacking NPRA as compared with the age-matched wild-type mice. In parallel, NF-kappaB binding activity was almost five-fold greater in the nuclear extract of Npr1(-/-) mutant mice hearts as compared with wild-type Npr1(+/+) mice hearts. Guanylyl cyclase (GC) activity and cGMP levels were drastically reduced by 10- and 5-fold, respectively, in ventricular tissues of mutant mice hearts relative to wild-type controls. The present findings provide direct evidence that ablation of NPRA/cGMP signaling activates inflammatory cytokines, probably via NF-kappaB mediated signaling pathway, and is associated with hypertrophic growth of null mutant mice hearts.  相似文献   

9.
To characterize the ability of bifidobacteria to affect the production of macrophage-derived cytokines, a murine macrophage-like cell line, J774.1, was cultured in the presence of 27 strains of heat-inactivated bifidobacteria. Bifidobacterium adolescentis and B. longum, known as adult-type bifidobacteria, induced significantly more pro-inflammatory cytokine secretion, IL-12 and TNF-alpha, by J774.1 cells, than did the infant-type bifidobacteria, B. bifidum, B. breve, and B. infantis (P<0.01). In contrast, B. adolescentis did not stimulate the production of anti-inflammatory IL-10 from J774.1 cells as the other tested bacteria did. The results suggest that the adult-type bifidobacteria, especially B. adolescentis, may be more potent to amplify but less able to down-regulate the inflammatory response.  相似文献   

10.
Enteroviruses are associated with chronic inflammatory and autoimmune diseases in humans. In these conditions, the cytokine network is supposed to have an important role in inflammation and modulation of the (auto)immune response. In the present study, we demonstrate that coxsackie virus B4 and poliovirus type 1 induce production of pro-inflammatory cytokines IL-1 beta and TNF-alpha in freshly isolated human leucocytes. Furthermore, enteroviruses stimulate the production of cytokines belonging to Th(1)pathways (IFN-gamma, IL-2), and IL-10, which play a role in regulation of the cellular and humoral immune response.  相似文献   

11.
12.
A total of 360 pacus (Piaractus mesopotamicus) were used to study vascular permeability (VP) and inflammatory cell component (CC) in induced aerocystitis in P. mesopotamicus through inoculation of inactivated Aeromonas hydrophila, and the effect of steroidal and nonsteroidal anti-inflammatory drugs. It was observed that after inoculation of A. hydrophila, the maximum VP occurred 180 min post-stimulus (MPS). Pretreatment with anti-inflammatory drugs inhibited VP, and the inhibitory effect of dexamethasone was seen earlier than the effects caused by meloxicam and indomethacin. Inoculation of the bacterium caused a gradual increase in the accumulation of cells, which reached a maximum 24 h post-stimulus (HPS). Pretreatment with dexamethasone, indomethacin and meloxicam reduced the accumulation of lymphocytes, thrombocytes, granulocytes and macrophages. There was no significant difference between the different doses of the drugs tested. The results suggest that eicosanoids and pro-inflammatory cytokines participate in chemical mediation in acute inflammation in pacus.  相似文献   

13.
Transplantation of human islets is an attractive alternative to daily insulin injections for patients with type 1 diabetes. However, the majority of islet recipients lose graft function within five years. Inflammation is a primary contributor to graft loss, and inhibiting pro-inflammatory cytokine activity can reverse inflammation mediated dysfunction of islet grafts. As mesenchymal stem cells (MSCs) possess numerous immunoregulatory properties, we hypothesized that MSCs could protect human islets from pro-inflammatory cytokines. Five hundred human islets were co-cultured with 0.5 or 1.0 × 10(6) human MSCs derived from bone marrow or pancreas for 24 hours followed by 48 hour exposure to interferon-γ, tumor necrosis factor-α and interleukin 1β. Controls include islets cultured alone (± cytokines) and with human dermal fibroblasts (± cytokines). For all conditions, glucose stimulated insulin secretion (GSIS), total islet cellular insulin content, islet β cell apoptosis, and potential cytoprotective factors secreted in the culture media were determined. Cytokine exposure disrupted human islet GSIS based on stimulation index and percentage insulin secretion. Conversely, culture with 1.0 × 10(6) bMSCs preserved GSIS from cytokine treated islets. Protective effects were not observed with fibroblasts, indicating that preservation of human islet GSIS after exposure to pro-inflammatory cytokines is MSC dependent. Islet β cell apoptosis was observed in the presence of cytokines; however, culture of bMSCs with islets prevented β cell apoptosis after cytokine treatment. Hepatocyte growth factor (HGF) as well as matrix metalloproteinases 2 and 9 were also identified as putative secreted cytoprotective factors; however, other secreted factors likely play a role in protection. This study, therefore, demonstrates that MSCs may be beneficial for islet engraftment by promoting cell survival and reduced inflammation.  相似文献   

14.
Exposure to pro-inflammatory cytokines, such as Angiotensin II, endothelin-1 or TNF leads to endothelial dysfunction, characterized by the reduced production of nitric oxide via endothelial nitric oxide synthase (eNOS). We recently identified the Ca2+ binding protein S100A1 as an essential factor required for eNOS activity. Here we report that pro-inflammatory cytokines down-regulate expression of S100A1 in primary human microvascular endothelial cells (HMVECs) via induction of microRNA-138 (miR-138), in a manner that depends on the stabilization of HIF1-α. We show that loss of S100A1 in ECs reduces stimulus-induced NO production, which can be prevented by inhibition of miR-138. Our study suggests that targeting miR-138 might be beneficial for the treatment of cardiovascular disease.  相似文献   

15.
Hyperbaric oxygen (HBO) is a therapeutic intervention with applications in a large variety of diseases, including traumatic injuries and acute or chronic infections. The presence of pro-inflammatory cytokines regulates certain factors including adhesion molecules, which play a significant role in HBO effects. We have investigated the effect of HBO on pro-inflammatory cytokine release [tumor necrosis factor-alpha (TNF-alpha), interleukin 6 and 8 (IL-6 and IL-8)], and the regulation of adhesion molecules [soluble intercellular adhesion molecule-1 (sICAM-1) and soluble vascular adhesion molecule (sVCAM)] after lipopolysaccharide (LPS) stimulation in 16 healthy individuals, originating from an urban area. A total number of 64 samples were treated, divided into four groups: Group A: not stimulated with LPS and not exposed to HBO. Group B: stimulated with LPS and not exposed to HBO. Group C: not stimulated with LPS and exposed to HBO. Group D: stimulated with LPS and exposed to HBO. The LPS stimulation dose was 100 pg\ml for 0.1 ml whole blood diluted 1:10. After incubation, samples were exposed to HBO with 100% O2 at 2.4 atmospheres absolute (ATA) for 90 min. TNF-alpha, IL-6, IL-8 and sICAM-1, sVCAM levels were determined in culture supernatant, with ELISA. We observed an enhanced effect of LPS stimulation following exposure to HBO, which caused an increase in cytokine production (TNF-alpha, IL-6, IL-8), a reduction in sICAM, and no change to sVCAM, while their levels without stimulation remained almost invariable. The decrease in sICAM levels could be related to the increased levels of IL-8, as the production of this chemokine is involved in the regulation of adhesion molecules.  相似文献   

16.
Endotoxin lipopolysaccharide (LPS) plays an important role in the acceleration of inflammatory reaction of hepa- titis as the second attack. Compounds that can prevent in- flammation by targeting LPS have potential therapeutic clinical application. Epigallocatechin-3-gallate (EGCG) has potent hepatocyte-protective effect and mild anti-hepatitis virus function. Here, we investigated whether EGCG attenuated the severity of inflammatory response in LPS-stimulated L02 hepatocytes. L02 hepatocytes were pretreated with EGCG for 2 h, then stimulated by LPS at 250 ng/ml. The expression levels of chemokine regulated upon activation normal T-cell expressed and secreted (Rantes) and monocyte chemotactic protein-1 (MCP-1), pro-inflammatory cytokines tumor necrosis factor-α (TNF-α and interferon-% adhesion molecule intercellular adhesion molecule-1 (ICAM-1), oxidant stress molecules nitric oxide (NO), vascular endothelial growth factor (VEGF), and matrix metaHoproteinase-2 (MMP-2) were tested by enzyme-linked immunosorbent assay. The expression of total extracellular signal-regulated kinase 1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), p-AKT, total p38, phospho-p38 (p-p38), total p65 and phospho-p65 (p-p65), IκBα, phospho-IκBα(p-IκBα and TNF receptor associated factor 2 were tested by western blot analysis. Our results showed that pre-treatment with EGCG could significantly reduce the production of TNF-α, Rantes, MCP-1, ICAM-1, NO, VEGF, and MMP-2 in LPS-stimulated L02 hepatocytes in a dose-dependent manner. The effect of EGCG may be related to the inhibition of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways by down-regulation of p-IκBα, p65, p-p65, p-p38, p-ERK1/2, and p-AKT. These results indicate that EGCG suppresses LPS-induced inflammatory response and oxidant stress and exerts its hepatocyte-protective activity partially by inhibiting NF-κB and MAPK pathways.  相似文献   

17.

Background

A previous urine proteomic analysis from our laboratory suggested that hepcidin may be a biomarker for lupus nephritis flare. Immunohistochemical staining of kidney biopsies from lupus patients showed that hepcidin was expressed by infiltrating renal leukocytes. Here we investigated whether inflammatory cytokines relevant to the pathogenesis of lupus nephritis and other glomerular diseases regulate hepcidin expression by human monocytes.

Methods

Human CD14+ monocytes were incubated with interferon alpha (IFNα), interferon gamma (IFNγ), interleukin-6 (IL6), interleukin-1 beta (IL1β), monocyte chemotactic factor-1 (MCP1), or tumor necrosis factor alpha (TNFα). Hepcidin expression was examined by real-time PCR and enzyme immunoassay.

Results

Monocyte hepcidin mRNA increased during adherence to the tissue culture wells, reaching a level 150-fold higher than baseline within 12 h of plating. After accounting for the effects of adhesion, monocytes showed time and dose-dependent up-regulation of hepcidin mRNA upon treatment with IFNα or IL6. One hour of incubation with IFNα or IL6 increased hepcidin mRNA 20 and 80-fold, respectively; by 24 h the mRNA remained 5- and 2.4-fold higher than baseline. IL1β, IFNγ, and MCP-1 did not affect monocyte hepcidin expression. TNFα inhibited hepcidin induction by IL6 in monocytes by 44%. After 24 h of treatment with IFNα or IL6, immunoreactive hepcidin production by monocytes increased 3- and 2.6-fold, respectively.

Conclusion

Human monocytes produce hepcidin in response to adhesion and the pro-inflammatory cytokines IFNα and IL6.

General significance

The appearance of hepcidin in the kidneys or urine during glomerular diseases may be from infiltrating monocytes induced to express hepcidin by adherence and exposure to pro-inflammatory cytokines found in the renal milieu.  相似文献   

18.
19.
Hessle CC  Andersson B  Wold AE 《Cytokine》2005,30(6):311-318
Pro-inflammatory cytokines secreted by tissue macrophages recruit polymorphonuclear leukocytes and evoke fever, cachexia and production of acute phase proteins. This study investigates whether Gram-positive and Gram-negative bacteria equally and efficiently trigger production of the pro-inflammatory cytokines IL-1 beta, IL-6, IL-8 and TNF-alpha in human monocytes. A range of aerobic and anaerobic Gram-positive and Gram-negative bacteria were killed by UV-light and added in different concentrations to human monocytes. Cytokines were measured in 24 h supernatants by ELISA. Gram-positive and Gram-negative bacteria were equally efficient inducers of IL-1 beta, but Gram-positive bacteria generated twice as much TNF-alpha as did Gram-negative bacteria (p<0.001 for 25 and 250 bacteria/cell). In contrast, Gram-negative bacteria induced at least twice as much IL-6 and IL-8 as did Gram-positive bacteria (p<0.001 for 2.5, 25 and 250 bacteria/cell). While the cytokine responses to LPS were similar to those induced by the corresponding amount of Gram-negative bacteria, the strong IL-1 beta and TNF-alpha responses to Gram-positive bacteria could not be induced by soluble peptidoglycan or lipotheicoic acid. The particular nature of the bacteria, thus seem to modify the response to Gram-positive bacterial components. The different cytokine profiles evoked by Gram-positive and Gram-negative bacteria might optimize clearance of bacteria that differ in cell wall structure.  相似文献   

20.
Type II diabetes regroups different physiological anomalies that ultimately lead to low-grade chronic inflammation, insulin resistance and loss of pancreatic β-cells. Obesity is one of the best examples of such a condition that can develop into Metabolic Syndrome, causing serious health problems of great socio-economic consequences. The pathological outcome of obesity has a genetic basis and depends on the delicate balance between pro- and anti-inflammatory effectors of the immune system. The causal link between obesity and inflammation is well established. While innate immunity plays a key role in the development of a pro-inflammatory state in obese adipose tissues, it has now become clear that adaptive immune cells are also involved and participate in the cascade of events that lead to metabolic perturbations. The efficacy of some immunotherapeutic protocols in reducing the symptoms of obesity-driven metabolic syndrome in mice implicated all arms of the immune response. Recently, the production of pathogenic immunoglobulins and pro-inflammatory cytokines by B and T lymphocytes suggested an auto-immune basis for the establishment of a non-healthy obese state. Understanding the cellular landscape of obese adipose tissues and how immune cells sustain chronic inflammation holds the key to the development of targeted therapies. In this review, we emphasize the role of antigen-presenting cells and MHC molecules in obese adipose tissue and the general contribution of the adaptive arm of the immune system in inflammation-induced insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号