首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
An endo-exonuclease has been identified and partially purified from the basidiocarp tissues of the basidiomycete Coprinus cinereus, which include synchronous meiosis at karyogamy-pachytene stages. Its peak activity appears during the meiotic prophase. The Coprinus endo-exonuclease has a single-strand specific endonuclease activity that converts the supercoiled DNA to relaxed DNA. The endonucleolytic cleavage of single-strand DNA generates 3'-phosphomonoester termini. It is also a single-strand-specific exonuclease and it hydrolyzes linear DNA in a 3' to 5' direction, but is unable to hydrolyze single-strand DNA having a 3'-phosphomonoester terminus. It requires Mg2+ with an optimal concentration of 25 mM. It has an optimal pH of 8.3, a peak enzyme activity at 50 degrees C, and it contains a single 43-kilodalton polypeptide. Coprinus meiotic endo-exonuclease may be involved in the substrate preparation for meiotic recombination.  相似文献   

3.
The primary purpose of the present study was to investigate whether DNA replication at meiotic prophase also requires replication factors, especially proliferating cell nuclear antigen (PCNA). We cloned PCNA cDNAs (CoPCNA) from a cDNA library made from basidia of the basidiomycete, Coprinus cinereus. Interestingly, although CoPCNA is a single-copy gene in the genome, two different PCNA cDNA species were isolated using degenerate primers and a meiotic cDNA library, and were designated as CoPCNA-alpha and CoPCNA-beta. CoPCNA-beta was made by truncating at specific sites in CoPCNA-alpha mRNA, 5'-AAGAAGGAGAAG-3' and 5'-GAAGAGGAAGAA-3'. Both of these sequences were present in exon IV in the genomic sequence, and interestingly the former was the same as the inverse sequence of the latter. CoPCNA-alpha was 107 amino acids larger than human PCNA, and so the 107 amino-acid sequence was inserted in a loop, the so-called D2E2 loop, in human PCNA. Northern blotting analysis indicated that CoPCNA was expressed not only at premeiotic S but also at the meiotic prophase stages such as leptotene and early zygotene, just before and when karyogamy occurs and the homologous chromosomes pair. Western blotting analysis using anti-(CoPCNA-alpha) Ig revealed that at least two CoPCNA mRNAs before and after truncation were translated at the meiotic prophase as CoPCNA-alpha and CoPCNA-beta.  相似文献   

4.
5.
In yeast, Rad21/Scc1 and its meiotic variant Rec8 are key players in the establishment and subsequent dissolution of sister chromatid cohesion for mitosis and meiosis, respectively, which are essential for chromosome segregation. Unlike yeast, our identification revealed that the rice genome has 4 RAD21-like genes that share lower than 21% identity at polypeptide levels, and each is present as a single copy in this genome. Here we describe our analysis of the function of OsRAD21-4 by RNAi. Western blot analyses indicated that the protein was most abundant in young flowers and less in leaves and buds but absent in roots. In flowers, the expression was further defined to premeiotic pollen mother cells (PMCs) and meiotic PMCs of anthers. Meiotic chromosome behaviors were monitored from male meiocytes of OsRAD21-4-deficient lines mediated by RNAi. The male meiocytes showed multiple aberrant events at meiotic prophase I, including over-condensation of chromosomes, precocious segregation of homologues and chromosome fragmentation. Fluorescence in situ hybridization experiments revealed that the deficient lines were defective in homologous pairing and cohesion at sister chromatid arms. These defects resulted in unequal chromosome segregation and aberrant spore generation. These observations suggest that OsRad21-4 is essential for efficient meiosis.  相似文献   

6.
7.
8.
When the hymenial lamellae of Coprinus congregatus Bull ex Fr. are used as implants, their potential for renewed fruiting varies according to the photocontrolled meiosis and the consecutive sporogenesis. In the case of young lamellae, whose basidia are still at the dikaryon stage, one can observe immediate start of mycelial growth all around the lamellae and production of the first mature sporophores directly on the lamellae (direct fruiting). Simultaneously, meiosis does not occur in hymenial cells. Conversely, in the case of implantation of the oldest lamellae, whose basidia are characterized by meiotic nuclei beyond prophase 1 and rather near telophase 2 (tetranucleate stage), vegetative growth starts slowly and the first mature sporophores are not produced on the lamellae but on the surrounding vegetative mycelium (indirect fruiting). When the lamellae are isolated from photoindifferent primordia – for instance, 12 h before maturity – sporogenesis in hymenial cells proceeds normally until autolysis of the isolated lamellae. Such isolated lamellae no longer show direct fruiting where the first flush is concerned.  相似文献   

9.
The dyad mutant of Arabidopsis was previously identified as being defective in female meiosis. We report here the analysis of the DYAD gene. In ovules and anthers DYAD RNA is detected specifically in female and male meiocytes respectively, in premeiotic interphase/meiotic prophase. Analysis of chromosome spreads in female meiocytes showed that in the mutant, chromosomes did not undergo synapsis and formed ten univalents instead of five bivalents. Unlike mutations in AtDMC1 and AtSPO11 which also affect bivalent formation as the univalent chromosomes segregate randomly, the dyad univalents formed an ordered metaphase plate and underwent an equational division. This suggests a requirement for DYAD for chromosome synapsis and centromere configuration in female meiosis. The dyad mutant showed increased and persistent expression of a meiosis-specific marker, pAtDMC1::GUS during female meiosis, indicative of defective meiotic progression. The sequence of the putative protein encoded by DYAD did not reveal strong similarity to other proteins. DYAD is therefore likely to encode a novel protein required for meiotic chromosome organisation and female meiotic progression.  相似文献   

10.
Changes in acetic-alcohol fixable DNA, RNA, and protein werefollowed in the tapetum, sporogenous tissue, and spores of thedeveloping maize anther using standard cytochemical methodsand microdensitometry. In the tapetum, early nuclear divisionsoccur without prior DNA synthesis, giving a population of IC nuclei. Subsequent synthesis produces the equivalent of 34,000C amounts per pollen sac, 20 times more than is present in thespores before pollen mitosis. The main tapetal RNA synthesisis during the meiotic prophase, with a further period of accumulationin the interval, tetrad to young spores. In the meiocytes, theprincipal accumulation is in the early prophase, with no synthesisduring the meiotic divisions or through the tetrad period. Proteinaccumulation occurs in the tapetum up to mid-meiotic prophase;after this there is a pause, followed by further synthesis frommeiotic metaphase I to the final dissolution of the tissue.In the meiocytes, protein is accumulated through the early prophase;there is no synthesis during the meiotic mitoses or in the tetradperiod, but active accumula-tion occurs in the developing spores. The implications of these observations are discussed in relationto the function of the tapetum.  相似文献   

11.
12.
New Insights into the Role of the Maize Ameiotic1 Locus   总被引:1,自引:0,他引:1       下载免费PDF全文
I. Golubovskaya  N. Avalkina    W. F. Sheridan 《Genetics》1997,147(3):1339-1350
In maize the am1-1 mutant allele results in both the male and female meiocytes undergoing mitosis in place of the meiotic divisions. A second mutant allele am1-praI enables both the male and female meiocytes to proceed to the early zygotene stage of meiotic prophase I before being blocked. Here we report on three new alleles that allow all male meiocytes to undergo mitosis but in female meiocytes approximately one quarter (am1-2), one half (am1-485), or all (am1-489) of them are blocked at an abnormal interphase stage. Previous analysis has shown that am1-praI is dominant to am1-1 in male meiocytes. Cytological analysis of heteroallelic combinations in female meiocytes now indicates a dominance relationship of am1-praI > am1-1 > am1-2/am1-485 > am1-489. The evidence provided by the female phenotypes of the new mutant alleles suggest that, whereas the normal am1 allele is required for the meiocytes to proceed through meiosis, a partially functional allele may be required for their diversion into a mitotic division. The partial or complete blockage of mitosis in female meiocytes carrying the new am1 alleles rules out the possibility that the mitotic division of mutant meiocytes reflects a simple default pathway for cells that cannot initiate meiosis. This locus may have a dual function.  相似文献   

13.
DNA ligase I is thought to be essential for DNA replication, repair and recombination, at least in the mitotic cell cycle, but whether this is also the case during the meiotic cell cycle is still obscure. To investigate the role of DNA ligase I during the meiotic cell cycle, we cloned the Coprinus cinereus DNA ligase I cDNA (CcLIG1). Northern blotting analysis indicated that CcLIG1 is expressed not only in the premeiotic S-phase but also during the meiotic cell cycle itself. Especially, intense signals were observed in the leptotene and zygotene stages. Western blotting analysis indicated that CcLIG1 is expressed through the meiotic cell cycle and immunofluorescence also showed CcLIG1 protein staining in meiotic cells. Interestingly, the patterns was similar to that for the C. cinereus proliferating cell nuclear antigen gene (CcPCNA) and immunoprecipitation analysis suggested that CcPCNA binds to CcLIG1 in crude extracts of meiotic prophase I tissues. Based on these observations, relationships and roles during the meiotic cell cycle are discussed.  相似文献   

14.
In flowering plants, meiocytes develop from subepidermal cells in anthers and ovules. The mechanisms that integrate gene-regulatory processes with meiotic programs during reproductive development remain poorly characterized. Here, we show that Arabidopsis thaliana plants deficient in ACTIN-RELATED PROTEIN6 (ARP6), a subunit of the SWR1 ATP-dependent chromatin-remodeling complex, exhibit defects in prophase I of female meiosis. We found that this meiotic defect is likely due to dysregulated expression of meiotic genes, particularly those involved in meiotic recombination, including DMC1 (DISRUPTED MEIOTIC cDNA1). Analysis of DMC1 expression in arp6 mutant plants indicated that ARP6 inhibits expression of DMC1 in the megasporocyte and surrounding nonsporogeneous ovule cells before meiosis. After cells enter meiosis, however, ARP6 activates DMC1 expression specifically in the megasporocyte even as it continues to inhibit DMC1 expression in the nonsporogenous ovule cells. We further show that deposition of the histone variant H2A.Z, mediated by the SWR1 chromatin-remodeling complex at the DMC1 gene body, requires ARP6. Therefore, ARP6 regulates female meiosis by determining the spatial and temporal patterns of gene expression required for proper meiosis during ovule development.  相似文献   

15.
A method has been developed for preparing two-dimensional surface spreads of synaptonemal complexes (SCs) from plant meiocytes for examination by light and/or electron microscopy. Clear, well-spread preparations of SCs and unpaired axial cores have been obtained from a range of meiotic prophase I stages (leptotene to pachytene) from Allium and Secale meiocytes.  相似文献   

16.
Previously, the activity of DNA polymerase alpha was found in the meiotic prophase I including non-S phase stages, in the basidiomycetes, Coprinus cinereus. To study DNA polymerase alpha during meiosis, we cloned cDNAs for the C. cinereus DNA polymerase alpha catalytic subunit (p140) and C. cinereus primase small subunit (p48). Northern analysis indicated that both p140 and p48 are expressed not only at S phase but also during the leptotene/zygotene stages of meiotic prophase I. In situ immuno-staining of cells at meiotic prophase I revealed a sub population of p48 that does not colocalize with p140 in nuclei. We also purified the pol alpha-primase complex from meiotic cells by column chromatography and characterized its biochemical properties. We found a subpopulation of primase that was separated from the pol alpha-primase complex by phosphocellulose column chromatography. Glycerol gradient density sedimentation results indicated that the amount of intact pol alpha-primase complex in crude extract is reduced, and that a smaller complex appears upon meiotic development. These results suggest that the form of the DNA polymerase alpha-primase complex is altered during meiotic development.  相似文献   

17.
The analysis of meiosis in higher plants has benefited considerably in recent years from the completion of the genome sequence of the model plant Arabidopsis thaliana and the development of cytological techniques for this species. A combination of forward and reverse genetics has provided important routes toward the identification of meiotic genes in Arabidopsis. Nevertheless identification of certain meiotic genes remains a challenge due to problems such as limited sequence conservation between species, existence of closely related gene families and in some cases functional redundancy between gene family members. Hence there is a requirement to develop new experimental approaches that can be used in conjunction with existing methods to enable a greater range of plant meiotic genes to be identified. As one potential route towards this goal we have initiated a proteomics-based approach. Unfortunately, the small size of Arabidopsis anthers makes an analysis in this species technically very difficult. Therefore we have initially focussed on Brassica oleracea which is closely related to Arabidopsis, but has the advantage of possessing significantly larger anthers. The basic strategy has been to use peptide mass-finger printing and matrix-assisted laser desorption ionization time of flight mass spectrometry to analyse proteins expressed in meiocytes during prophase I of meiosis. Initial experiments based on the analysis of proteins from staged anther tissue proved disappointing due to the low level of detection of proteins associated with meiosis. However, by extruding meiocytes in early prophase I from individual anthers prior to analysis a significant enrichment of meiotic proteins has been achieved. Analysis suggests that at least 18% of the proteins identified by this route have a putative meiotic function and that this figure could be as high as one-third of the total. Approaches to increase the enrichment of proteins involved in meiotic recombination and chromosome synapsis are also described.  相似文献   

18.
The DNA mismatch repair (MMR) family functions in a variety of contexts to preserve genome integrity in most eukaryotes. In particular, members of the MMR family are involved in the process of meiotic recombination in germ cells. MMR gene mutations in mice result in meiotic disruption during prophase I, but the extent of this disruption often differs between male and female meiocytes. To address the role of MMR proteins specifically in female meiosis, we explored the progression of oocytes through prophase I and the meiotic divisions in mice harboring deletions in members of the MMR pathway (Mlh1, Mlh3, Exo1, and an ATPase-deficient variant of Mlh1, Mlh1(G67R)). The colocalization of MLH1 and MLH3, key proteins involved in stabilization of nascent crossovers, was dependent on intact heterodimer formation and was highly correlated with the ability of oocytes to progress through to metaphase II. The exception was Exo1(-/-) oocytes, in which normal MLH1/MLH3 localization was observed followed by failure to proceed to metaphase II. All mutant oocytes were able to resume meiosis after dictyate arrest, but they showed a dramatic decline in chiasmata (to less than 25% of normal), accompanied by varied progression through metaphase I. Taken together, these results demonstrate that MMR function is required for the formation and stabilization of crossovers in mammalian oocytes and that, in the absence of a functional MMR system, the failure to maintain chiasmata results in a reduced ability to proceed normally through the first and second meiotic divisions, despite near-normal levels of meiotic resumption after dictyate arrest.  相似文献   

19.
In the basidiomycete Coprinus cinereus (C. cinereus), which shows a highly synchronous meiotic cell cycle, the meiotic prophase I cells demonstrate flap endonuclease-1 activity. To investigate its role during meiosis, we isolated a C. cinereus cDNA homolog of flap endonuclease-1 (CcFEN-1), 1377bp in length with the open reading frame (ORF) encoding a predicted molecular mass of 51 kDa. At amino-acid residues Glu276-Pro345, a specific inserted sequence composed of 70 amino acids rich in polar forms was found to exist, without sequence identity to other eukaryotic FEN-1 or the polar amino acid rich sequences found in C. cinereus PCNA and C. cinereus DNA ligase IV, although the lengths and percentages of polar amino acids were similar. Northern hybridization analysis indicated CcFEN-1 to be expressed not only in the pre-meiotic S phase but also in meiotic prophase I. The roles of CcFEN-1 during meiosis are discussed.  相似文献   

20.
A-T (ataxia telangiectasia) individuals frequently display gonadal atrophy, and Atm-/- mice show spermatogenic failure due to arrest at prophase of meiosis I. Chromosomal movements take place during meiotic prophase, with telomeres congregating on the nuclear envelope to transiently form a cluster during the leptotene/zygotene transition (bouquet arrangement). Since the ATM protein has been implicated in telomere metabolism of somatic cells, we have set out to investigate the effects of Atm inactivation on meiotic telomere behavior. Fluorescent in situ hybridization and synaptonemal complex (SC) immunostaining of structurally preserved spermatocytes I revealed that telomere clustering occurs aberrantly in Atm-/- mice. Numerous spermatocytes of Atm-/- mice displayed locally accumulated telomeres with stretches of SC near the clustered chromosome ends. This contrasted with spermatogenesis of normal mice, where only a few leptotene/zygotene spermatocytes I with clustered telomeres were detected. Pachytene nuclei, which were much more abundant in normal mice, displayed telomeres scattered over the nuclear periphery. It appears that the timing and occurrence of chromosome polarization is altered in Atm-/- mice. When we examined telomere-nuclear matrix interactions in spermatocytes I, a significant difference was observed in the ratio of soluble versus matrix-associated telomeric DNA sequences between meiocytes of Atm-/- and control mice. We propose that the severe disruption of spermatogenesis during early prophase I in the absence of functional Atm may be partly due to altered interactions of telomeres with the nuclear matrix and distorted meiotic telomere clustering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号