首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic induction times and photoinhibition in relation to simulated sunflecks (sudden increase of irradiance from 20 to 1,500 μmol m−2 s−1) were examined in leaves of co-occurring Fagus lucida (a deciduous tree) and Castanopsis lamontii (an evergreen tree) saplings grown either in a beech forest understory or in an adjacent open site during a late rainy season. Two hypotheses were tested: (1) understory leaves would display faster photosynthetic induction times and greater photoinhibition than open-grown leaves; and (2) evergreen species would have slower photosynthetic induction times and lighter photoinhibition than deciduous species. Times to reach 90% of maximal CO2 assimilation rate (t 90%A ) and stomatal conductance did not differ between species, but showed faster by 3–5 min in open-grown leaves than understory leaves due to higher initial stomatal conductance (g s initial) and induction state 1 min into simulated sunflecks (IS1min) in the former. Our analysis across the published data on photosynthetic induction of 48 broad-leaved woody species again revealed the negative correlations between t 90%A and either g s initial or IS1min, and the similarity of t 90%A and between evergreen and deciduous species. Measurements of maximum PSII photochemical efficiency (F v/F m) indicated that photoinhibition occurred in saplings in any of the growth habitats during sunfleck-induced photosynthetic induction. Despite no interspecific differences in the degree of photoinhibition, understory leaves of both species suffered heavier photoinhibition than open-grown leaves, as indicated by a stronger decrease of F v/F m in the former. Dynamic changes in the quantum yields of PSII photochemistry and ΔpH- and xanthophyll-regulated thermal dissipation and adjustments in the partitioning of electron flow between assimilative and non-assimilative processes were functional to resist photoinhibition. However, such photoinhibition, together with stomatal and biochemical limitations, would decrease carbon gain during simulated sunflecks, particularly in understory leaves.  相似文献   

2.
Photosynthetic responses to light variation in rainforest species   总被引:1,自引:0,他引:1  
Summary The dependence of net carbon gain during lightflecks (artificial sunflecks) on leaf induction state, lightfleck duration, lightfleck photosynthetic photon flux density (PFD), and the previous light environment were investigated in A. macrorrhiza and T. australis, two Australian rainforest species. The photosynthetic efficiency during lightflecks was also investigated by comparing observed values of carbon gain with predicted values based on steady-state CO2 assimilation rates. In both species, carbon gain and photosynthetic efficiency increased during a series of five 30-or 60-s lightflecks that followed a long period of low light; efficiency was linearly related to leaf induction state.In fully-induced leaves of both species, efficiency decreased and carbon gain increased with lightfleck duration. Low-light grown A. macrorrhiza had greater efficiency than predicted based on steady-state rates (above 100%) for lightflecks less than 40 s long, whereas leaves grown in high light had efficiencies exceeding 100% only during 5-s lightflecks. The efficiency of leaves of T. australis ranged from 58% for 40-s lightflecks to 96% for 5-s lightflecks.In low-light grown leaves of A. macrorrhiza, photosynthetic responses to lightflecks below 120 mol m-2 s-1 were not affected significantly by the previous light level. However, during lightflecks at 530 mol m-2 s-1, net carbon gain and photosynthetic efficiency of leaves previously exposed to low light levels were significantly reduced relative to those of leaves previously exposed to 120 and 530 mol m-2 s-1.These results indicate that, in shade-tolerant species, net carbon gain during sunflecks can be enhanced over values predicted from steady-state CO2 assimilation rates. The degree of enhancement, if any, will depend on sunfleck duration, previous light environment, and sunfleck PFD. In forest understory environments, the temporal pattern of light distribution may have far greater consequences for leaf carbon gain than the total integrated PFD.Supported by National Science Foundation Grant BSR 8217071 and USDA Grant 85-CRCR-1-1620  相似文献   

3.
Summary The relationships between carbon gain and availability of sunfleck- and diffuse-light were determined for Adenocaulon bicolor by following the daily courses of assimilation and incident PFD on different days and locations in a redwood forest understory. Total PFD for the days sampled ranged from 1 to 4% of full sun values. Sunflecks accounted for 50 to 90% of the total PFD and were responsible for the majority of variation among days and locations. Each day had several clusters of sunfleck activity separated by relatively long intervals of diffuse light. Most sunflecks had maximum PFDs below the photosynthetic light-saturation point, and they had a median length and diffuse light interval separating them of 2 s. Daily carbon gain varied from 14 to 40 mmol m-2d-1 and was more strongly correlated with differences among days in total sunfleck PFD (r 2=0.81) than with variation in diffuse PFD (r 2=0.54). The assimilation that was attributable to sunflecks ranged from essentially zero on one day to 30 to 65% of the total on the other days. Carbon gain on most days was 70 to 80% of that predicted by a model based on the measured light dependences of assimilation. This model assumed an instantaneous response to changes in PFD, whereas incomplete photosynthetic induction probably limited the capacity to respond to sunflecks and therefore limited carbon gain on most days.  相似文献   

4.
The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 mol photons m–2 s–1) and light compensation (70 to 100 mol m–2 s–1) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO2 fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.  相似文献   

5.
Microstegium vimineum (Trin.) A. Camus, a shade-tolerant C4 grass, has spread throughout the eastern United States since its introduction in 1919. This species invades disturbed understory habitats along streambanks and surrounding mesic forests, and has become a major pest in areas such as Great Smoky Mountains National Park. The focus of this study was to characterize the photosynthetic induction responses of M. vimineum, specifically its ability to utilize low light and sunflecks, two factors that may be critical to invasive abilities and survival in the understory. In addition, we were curious about the ability of a grass with the C4 photosynthetic pathway to respond to sunflecks. Plants were grown under 25% and 50% ambient sunlight, and photosynthetic responses to both steady-state and variable light were determined. Plants grown in both 25% and 50% ambient sun became 90% light saturated between 750–850 μmol m−2 s−1; however, plants grown in 50% ambient sun had significantly higher maximum steady-state photosynthetic rates (16.09 ± 1.37 μmol m−2 s−1 vs. 12.71 ± 1.18 μmol m−2 s−1). Both groups of plants induced to 50% of the steady-state rate in 3–5 min, while it took 10–13 min to reach 90% of maximum rates, under both flashing and steady-state light. For both groups of plants, stomatal conductance during induction reached maximum rates in 6–7 min, after which rates decreased slightly. Upon return to low light, rates of induction loss and stomatal closure were very rapid in both groups of plants, but were more rapid in those grown in high light. Rapid induction and the ability to induce under flashing light may enable this species to invade and dominate mesic understory habitats, while rapid induction loss due to stomatal closure may prevent excess water loss when low light constrains photosynthesis. The C4 pathway itself does not appear to present an insurmountable barrier to the ability of this grass species to respond to sunflecks in an understory environment. Received: 21 February 1997 / Accepted: 10 October 1997  相似文献   

6.
Naramoto  M.  Han  Q.  Kakubari  Y. 《Photosynthetica》2001,39(4):545-552
Photosynthetic induction responses to a sudden increase in photosynthetic photon flux density (PPFD) from lower background PPFD (0, 25, 50, and 100 mol m–2 s–1) to 1 000 mol m–2 s–1 were measured in leaves of Fagus crenata, Acer rufinerve Siebold & Zucc., and Viburnum furcatum growing in a gap and understory of a F. crenata forest in the Naeba mountains. In the gap, A. rufinerve exhibited more than 1.2-fold higher maximum net photosynthetic rate (P Nmax) than F. crenata and V. furcatum. Meanwhile, in the understory F. crenata exhibited the highest P Nmax among the three species. The photosynthetic induction period required to reach P Nmax was 3–41 min. The photosynthetic responses to increase in PPFD depended on the background PPFD before increase in PPFD. The induction period required to reach P Nmax was 2.5–6.5-fold longer when PPFD increased from darkness than when PPFD increased from 100 mol m–2 s–1. The induction period was correlated with initial P N and stomatal conductance (g s) relative to maximum values before increase in PPFD. The relationship was similar between the gap and the understory. As the background PPFD increased, the initial P N and g s increased, indicating that the degrees of biochemical and stomata limitations to dynamic photosynthetic performance decreased. Therefore, photosynthetic induction responses to increase in PPFD became faster with the increasing background PPFD. The differences in time required to reach induction between species, as well as between gap and understory, were mainly due to the varying of relative initial induction states in P N and g s at the same background PPFD.  相似文献   

7.
Few studies have evaluated elevated CO2 responses of trees in variable light despite its prevalence in forest understories and its potential importance for sapling survival. We studied two shade-tolerant species (Acer rubrum, Cornus florida) and two shade-intolerant species (Liquidambar styraciflua, Liriodendron tulipifera) growing in the understory of a Pinus taeda plantation under ambient and ambient+200 ppm CO2 in a free air carbon enrichment (FACE) experiment. Photosynthetic and stomatal responses to artificial changes in light intensity were measured on saplings to determine rates of induction gain under saturating light and induction loss under shade. We expected that growth in elevated CO2 would alter photosynthetic responses to variable light in these understory saplings. The results showed that elevated CO2 caused the expected enhancement in steady-state photosynthesis in both high and low light, but did not affect overall stomatal conductance or rates of induction gain in the four species. Induction loss after relatively short shade periods (<6 min) was slower in trees grown in elevated CO2 than in trees grown in ambient CO2 despite similar decreases in stomatal conductance. As a result leaves grown in elevated CO2 that maintained induction well in shade had higher carbon gain during subsequent light flecks than was expected from steady-state light response measurements. Thus, when frequent sunflecks maintain stomatal conductance and photosynthetic induction during the day, enhancements of long-term carbon gain by elevated CO2 could be underestimated by steady-state photosynthetic measures. With respect to species differences, both a tolerant, A. rubrum, and an intolerant species, L. tulipifera, showed rapid induction gain, but A. rubrum also lost induction rapidly (c. 12 min) in shade. These results, as well as those from independent studies in the literature, show that induction dynamics are not closely related to species shade tolerance. Therefore, it cannot be concluded that shade-tolerant species necessarily induce faster in the variable light conditions common in understories. Although our study is the first to examine dynamic photosynthetic responses to variable light in contrasting species in elevated CO2, studies on ecologically diverse species will be required to establish whether shade-tolerant and -intolerant species show different photosynthetic responses in elevated CO2 during sunflecks. We conclude that elevated CO2 affects dynamic gas exchange most strongly via photosynthetic enhancement during induction as well as in the steady state. Received: 1 April 1999 / Accepted: 16 August 1999  相似文献   

8.
Leaf gas-exchange responses to shadefleck–sunfleck and sun–cloud transitions were determined for in situ Cycas micronesica K.D. Hill plants on the island of Guam to add cycads to the published gymnosperm data. Sequential sunfleck–shadefleck transitions indicated understory leaves primed rapidly but open field leaves primed slowly. Time needed to reach 90% induction of net CO2 assimilation (PN) was 2.9 min for understory leaves and 13.9 min for open field leaves. Leaf responses to sun–cloud transitions exhibited minimal adjustment of stomatal conductance, so PN rapidly returned to precloud values following cloud–sun transitions. Results indicate bi-directional leaf acclimation behavior enables mature C. micronesica trees to thrive in deep understory conditions in some habitats and as emergent canopy trees in other habitats. These data are the first nonconifer gymnosperm data; the speed of gas-exchange responses to rapid light transitions was similar to some of the most rapid angiosperm species described in the literature.  相似文献   

9.
The importance of reduced leaf conductance (stomatal and boundary layer) in limiting photosynthetic rates during water stress was studied in Encelia frutescens, a drought-deciduous leaved subshrub of the Mohave and Sonoran Deserts. Light-saturated CO2 assimilation rates of greenhouse grown plants decreased from 42.6±1.6mol CO2 m-2 s-1 (x±s.e.) to 1.7±1.7 mol CO2 m-2s-1 as leaf water potential decreased from-1.5 MPa to-4.0 MPa. The dependence of light saturated, CO2 assimilation rate on leaf intercellular CO2 concentrations between 60 and 335 l l-1 was also determined as leaf water potential decline. This enabled us to compare the effects of leaf water potentials on limitations to carbon assimilation imposed by leaf conductance and by intrinsic photosynthetic capacity. Both leaf conductance and intrinsic photosynthetic capacity decreased with decreasing leaf water potential, but the decrease in leaf conductance was proportionately greater. The relative stomatal limitation, defined as the percent limitation in photosynthetic rate due to the presence of gas-phase diffusional barriers, increased from (x±s.e.) to 41±3% as water potentials became more negative. Since both leaf conductance and intrinsic photosynthetic capacity were severely reduced in an absolute sense, however, high photosynthetic rates could not have been restored at low leaf water potentials without simultaneous increases in both components.  相似文献   

10.
Summary The CO2 and H2O gas exchange of young beech trees (Fagus sylvatica L.) were measured over a growing season. Of particular interest was the adaptation of gas exchange to the low level of photon flux density in the understorey of the old beech. The recorded diurnal courses were subdivided into several classes of irradiance. The most frequent class was from only 30–40 E * m-2 * s-1. Even at the highest irradiance values, no light saturation in assimilation occurred. The light compensation point lies below 3 E * m-2 * s-1, because net dark respiration values are very low. Calculated from the initial slope of the light response curves a mean value of 0.02 mol CO2 * mol photons-1 shows a very efficient use of light be the young trees. At the optimal phase of assimilation, the relationship between the daily sum of irradiance and net photosynthesis is highly significantly correlated. Under the local climatic situation, the stomatal opening primarily depends on irradiance. In response to a change in irradiance, stomatal opening also changes rapidly. Therefore, there is only a loose relationship between transpiration rate and vapour pressure saturation deficit. Towards autumn, the transpiration coefficient (E/A-ratio, estimated under light saturation) increases strongly because net photosynthesis decreases simultaneously.  相似文献   

11.
D. R. Young  W. K. Smith 《Oecologia》1979,43(2):195-205
Summary The temperature and water relations of the herbaceous, understory, congeners Arnica cordifolia and Arnica latifolia were evaluated in relation to the sunfleck dynamics of their respective microhabitats. Arnica cordifolia microhabitats had more frequent, longer, and more intense sunflecks than those of A. latifolia which led to higher leaf temperatures (31°C versus 15°C) and transpirational fluxes (65 g cm-2 s-1 versus 16 g cm-2 s-1). Stomatal closure did not occur in response to high leaf temperatures and low stem water potentials during natural sunfleck exposures, even though plants were observed to wilt during midday, especially A. cordifolia. Experimentally, an artificial midday sunfleck of about 165 min caused plants of A. cordifolia not to regain turgor after 8 h in shade compared to a sunfleck duration of about 90 min for plants of A. latifolia. However, these sunfleck intervals occurred naturally only during the early morning and late afternoon when solar intensities were minimal. Also, A. cordifolia populations had over twice as many plants that were sunlit (>40% of total) compared with A. latifolia (<20% of total) at any particular time during a day. The small-scale distribution of both species appears tightly coupled to the sunfleck dynamics of their respective microhabitats due to the lack of stomatal action which would reduce transpiration and improve plant water status under sunlit conditions.  相似文献   

12.
The photosynthetic response of juveniles of Decussocarpus rospigliosii, an emergent primary forest species and shade tolerant in its juvenile stages and Alchornea triplinervia, a gap-colonizing species of tropical cloud forest in Venezuela was studied. Daily courses of microenvironmental variables and gas exchange under contrasting light conditions (gap and understory) were carried out in their natural environment and transplanted to different light regimes (shade and sun) in the field. The photosynthetic response and some anatomical characteristics of plants from different treatments were analyzed in the laboratory. Photosynthetic rates were low for both species, and were negative during some diurnal periods, related to the low photosynthetically active radiation levels obtained at both gap (6% of total radiation) and understory (2%). A. triplinervia shows higher rates (1.5–3.0 molm-2 -1) than D. rospigliosii (0.7–1.1 molm-2s-1). Both species showed increased photosynthetic rates when grown in gaps. A. triplinervia did not adjust its maximum photosynthetic rates to the prevailing light conditions. In contrast, D. rospigliosii responded to increased light levels. Both species showed low light compensation points when grown under total shade. There was a partial stomatal closure generally during midday in D. rospigliosii. A. triplinervia presented lower leaf conductances, transpiration rates and lesser stomatal control. Some leaf anatomical characteristics, in both species, were affected by variations in the light regime (i.e. increased leaf thickness, leaf specific weight and stomatal density). These results suggest that both species have the ability to respond to variations in their natural light environments, therefore maintaining a favorable carbon balance during the day.  相似文献   

13.
The effect of leaf water potential () on net CO2 assimilation rate (A), stomatal conductance (g), transpiration (E) and water-use efficiency (WUE) was measured for three cultivars of cacao (Theobroma cacao L.) seedlings during three recurrent drought cycles. Net assimilation varied greatly at high water potentials, but as dropped below approximately -0.8 and -1.0 MPa, A was reduced to less than 1.5 mol CO2 m-2 s-1. The relation between g and A was highly significant and conformed to an asymptotic exponential model, with A approaching maximal values at stomatal conductances of 55–65 mmol H2O m-2 s-1. Net assimilation varied linearly (r=0.95) with transpiration, and the slope of the A-E relation (WUE) was approximately 3.0 mol CO2 mmol-1 H2O throughout the range of stomatal conductances observed. C i was insensitive to water stress, even though both g and A were strongly affected. Under the experimental conditions used here, mesophyll photosynthesis did not appear to control g through changes in C i. As stress intensified within each drying cycle, WUE of nonirrigated seedlings did not decline relative to that of controls even though CO2 and water vapor exchange rates underwent large displacements. The effect of seed source was highly significant for WUE, and the basis for observed differences among genotypes is discussed.Abbreviations ABA Abscisic Acid  相似文献   

14.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   

15.
M. B. Jones 《Oecologia》1987,71(3):355-359
Summary Photosynthesis and transpiration was measured in the large emergent C4 sedge Cyperus papyrus (papyrus) which occupies wide areas of wetland on the African continent. The maximum observed value of net assimilation was 35 mol CO2 m-2 s-1 at full sunlight but light saturation of photosynthesis did not occur. The quantum yield of photosynthesis obtained from the initial slope of the light response curves (0.06 mol mol-1 incident light) was relatively high and close to previously recorded values for some C4 grasses. Measurements made over two days showed that stomatal conductance was sensitive to the ambient air vapour pressure deficit (VPD) and was consistently lower on the day when VPD's were higher. There was, however, no marked midday closure of the stomata. Photosynthesis was also reduced on the day when VPD's were higher. The relationship between net photosynthesis and stomatal conductance was close to linear over the range of measurement conditions, with the result that intercellular CO2 concentrations (C i ) did not vary markedly. There was some evidence that C i decreased at high VPD's. The regulation of stomatal movement in papyrus appears to minimise excessive water loss while not severely limiting photosynthesis. The significance of this strategy for a wetland species with plentiful supplies of water is discussed.  相似文献   

16.
Jacobsen  J. V.  Zwar  J. A.  Chandler  P. M. 《Planta》1985,165(3):430-438
The role of oxygen in the photoinactivation of the photosynthetic apparatus of Spinacia oleracea L. was investigated. Moderate irradiation (1200 mol photons m-2s-1) of spinach leaves in an atmosphere of pure nitrogen caused strong inhibition of subsequently measured net CO2 assimilation, whereas considerably less photoinhibition was observed in the presence of low partial pressures (10–20 mbar) of O2. The decrease in activity caused by anaerobiosis in the light was not based on stomatal closure; the decline of assimilation represents a photoinhibition, as activity was not impaired by low irradiation (80 mol photos m-2s-1). In contrast, gassing with pure N2 in the dark caused strong inhibition. Electron-transport rates and chlorophyll-fluorescence data of thylakoids isolated from photoinhibited leaves indicated damage to the electron-transport system, in particular to photosystem II reaction centers. In vitro, photoinhibition in isolated thylakoid membranes was also strongly promoted by anaerobiosis. Photoinhibition of electron-transport rates under anaerobic conditions was characterized by a pronounced increase in the initial fluorescence level, F0, of chlorophyll-fluorescence induction, in contrast to photoinhibition under aerobic conditions. The results are discussed in terms of two mechanisms of photoinhibition, one that is suppressed and a second that is promoted by oxygen.Abbreviations Chl chlorophyll - DCMU 3-(3, 4-dichlorophenyl)-1,1-dimethylurea - PSI, II photosystem I, II  相似文献   

17.
Kübler  Janet E.  Raven  John A. 《Hydrobiologia》1996,326(1):401-406
Palmaria palmata, which is able to use HCO inf3 sup– as a carbon source for photosynthesis, and Lomentaria articulata, which is dependent on diffusive uptake of dissolved CO2, were grown under constant light and light with sunflecks designed to model wave-induced fluctuations of near-shore underwater light. Both species exhibited significantly increased stable carbon isotope discrimination (more negative values of 13C relative to PDB) when grown with sunflecks. More negative 13C values were associated with decreased growth rate of P. palmata but not of L. articulata. The contrasting effects of sunflecks on the carbon-use characteristics of the two species are discussed in terms of the energetic cost of HCO inf3 sup– use and the susceptibility of CO2 diffusion-dependent species to photoinhibition.  相似文献   

18.
The CO2 gas exchange rates of the Central European perennial understory plantAsarum europaeum L. were measured in late autumn (October 30 to November 30) in its natural habitat day and night.During these measurements the temperature ranged from 0 to 15°C and the absolute air humidity from 3 to 10 mg H2O·1–1. Temperature and absolute air humidity over these ranges did not affect CO2 net assimilation which was determined almost entirely by quantum flux density.CO2 net assimilation was light saturated at about 100 M·m–2·s–1 quantum flux density. The uptake rate at this point was 4.3 mg·dm–2·h–1. The compensation point occurred at approximately 1 M·m–2·s–1.  相似文献   

19.
Xanthophyll-cycle pigments and photosynthetic capacity (PSmax) were analyzed in 25 species from different light environments (canopy, gap, understory) within a Panamanian tropical forest. (1) Sun-exposed leaves of canopy tree species showed the highest photosynthetic capacities and largest xanthophyll-cycle pools (violaxanthin, antheraxanthin, zeaxanthin) of about 87 mmol mol-1 chlorophyll with only small amounts of -carotene [about 7 mmol mol-1 chlorophyll = 8% of total (+) carotene pool]. Under high natural photon flux densities (PFDs) canopy leaves rapidly converted up to 96% of the xanthophyll-cycle pool into zeaxanthin. The back reaction to violaxanthin occurred much faster in low light than in complete darkness. At the end of the night, zeaxanthin still accounted for, on average, 14% of the total xanthophyll-cycle pigments. (2) Leaves of gap plants had intermediate values of PSmax and a 43% lower total carotenoid content than canopy leaves. The average size of the xanthophyll-cycle pool was 35 mmol mol-1 chlorophyll, and -carotene accounted for up to 66% of the total (+) carotene pool. Under high light conditions gap plants converted, on average, 86% of the xanthophyll-cycle pigments into zeaxanthin. The back reaction, following a decrease in ambient PFD, was slower than the forward reaction. At the end of the night, zeaxanthin accounted for, on average, 7% of the xanthophyll-cycle pigments in gap plants. (3) Understory plants showed the lowest values of PSmax and the smallest xanthophyll-cycle pool of about 22 mmol mol-1 chlorophyll. -Carotene accounted for up to 70% of total carotene. The conversion of xanthophyll-cycle pigments into zeaxanthin was negligible during short sunflecks of 1–2 min duration and PFDs up to about 400 mol m-2 s-1. At predawn, leaves of understory plants rarely contained any detectable zeaxanthin. Aechmea magdalenae, an understory CAM plant, showed exceptionally high rates of PSmax per unit leaf area compared to sympatric C3 understory species.  相似文献   

20.
Paphiopedilum and Cypripedium are close relatives in the subfamily Cypripedioideae. Cypripedium leaves contain guard cell chloroplasts, whereas Paphiopedilum do not. It is unclear whether the lack of guard cell chloroplasts affects photosynthetic induction, which is important for understory plants to utilize sunflecks. To understand the role of guard cell chloroplasts in photosynthetic induction of Paphiopedilum and Cypripedium, the stomatal anatomy and photosynthetic induction of Paphiopedilum armeniacum and Cypripedium flavum were investigated at different ratios of red to blue light. The highest stomatal opening and photosynthesis of intact leaves in P. armeniacum were induced by irradiance enriched with blue light. Its stomatal opening could be induced by red light 250 µmol m?2 s?1, but the magnitude of stomatal opening was lower than those at the other light qualities. However, the stomatal opening and photosynthesis of C. flavum were highly induced by mixed blue and red light rather than pure blue or red light. The two orchid species did not differ in stomatal density, but P. armeniacum had smaller stomatal size than C. flavum. The stomata of P. armeniacum were slightly sunken into the leaf epidermis, while C. flavum protruded above the leaf surface. The slower photosynthetic induction and lower photosynthetic rate of P. armeniacum than C. flavum were linked to the lack of guard cell chloroplasts and specific stomatal structure, which reflected an adaptation of Paphiopedilum to periodic water deficiency in limestone habitats. These results provide evidence for the morphological and physiological evolution of stomata relation for water conservation under natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号