首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An investigation of airborne pollen in northern Mexico City was carried out for one year. A total of 24 taxa were identified and classified according to the growing form in pollen of trees, weeds and grasses. Pollen grains were recorded all year round with a peak in December. The trees group showed the highest quantity of pollen as well as taxa diversity, although its peak period was in the dry season. The weeds and grasses emitted a larger quantity of pollen in the rainy season. The dominant taxa wereAlnus, Casuarina, Compositae and Gramineae. As for their relation with meteorological parameters, we found that the increase of pollen concentration was related to high temperatures, low relative humidity and high wind speed, the latter causing an increase of airborne pollen with no dilution at all. The hours with the highest pollen concentration where from 16:00 to 18:00.  相似文献   

2.
Continuous aerobiological survey of the atmosphere of Mar del Plata was carried out from December 1991 to November 1993 with a Burkard volumetric spore trap. Daily slides were prepared and studied every 2 h with standard techniques. Weekly records were kept for 27 relevant pollen types selected either by their prevalence or relative high atmospheric concentration. Quantitative multivariate analysis enabled to distinguish three major pollen seasons, related to atmospheric dominance either arboreal pollen (AP) or non-arboreal pollen (NAP). June to October is the richest period in number of pollen types, mainly dominated by AP; while from November to May, there is an overwhelming dominance of NAP types, represented by grass, herb and weed pollen. The study and prediction of this phenomenon is of great interest not only from the ecosystem point of view, but in relation to human disease as well.  相似文献   

3.
Indoor and outdoor airborne fungal propagule concentrations in Mexico City   总被引:7,自引:0,他引:7  
Thirty homes of asthmatic adults located in Mexico City were examined to determine the predominant culturable fungi and the changes in their airborne concentrations. Fungi were cultured and identified microscopically from air samples collected in naturally ventilated homes, during both wet (July–August) and cool dry (November–December) seasons, and from settled dust from the same homes. Airborne dust from indoor yielded 99–4950 cfu m−3, and settled dust 102–106 cfu g−1 on DG18 agar. The indoor geometric mean concentration of airborne fungi during the cool dry season was 460 cfu m−3 while in the wet season it was 141 cfu m−3. Similarly, numbers of airborne fungal propagules out of doors decreased 60% between the dry and wet season. In general, the total fungal concentrations in indoor air were less than 103 cfu m−3 and a large proportion of them was collected in Stage-2 of the Andersen sampler. Moreover, the ratio between indoor and outdoor concentrations was <3:1. Five of the 30 sampled homes yielded >500 cfu m−3 of one genus, with up to 1493Cladosporium cfu m−3 or 2549Penicillium cfu m−3. Also, these two genera were predominant in both airborne and settled dust, and their concentrations were greater indoors than out, indicating a possible indoor source of fungal propagules. The predominant species wereCladosporium herbarum, Penicillium aurantiogriseum andP. chrysogenum. These results suggest that exposure to large concentrations of fungi occurs indoors and is associated with both seasons of the year and with particular home characteristics.  相似文献   

4.
The protein associated with airborne particles was measured during 1991 as an indicator of airborne biological material in different outdoor urban environments. Fifty air samples were collected simultaneously at three sampling sites, located in the north, south and downtown Mexico City, using a PM10 high-volume sampler (particles<10 μm). The air filters were weighed and protein extracted using a phosphate buffer. Protein concentrations were determined by Lowry assay. The extracts were also analysed by SDS electrophoresis and IEF using a Phastsystem. High concentrations of airborne particles were recorded at the sampling sites with a geometric mean of 70.2 μg/m3 in the south (residential area), 95.5 μg/m3 in the center (urban-commercial area), and with the highest value of 108.9 μg/m3 in the north (urban-industrial area). No statistically significant difference (P>0.05) was observed among the protein concentrations from the sampling sites and the concentrations ranged from non-detectable to 2.54 μg/m3. However, the protein concentrations presented significant difference (P<0.05) with respect to rainy and dry seasons. The Spearman correlation coefficient between protein concentration and airborne particles concentration was statistically significant (r=0.50). The molecular weights (MW) and isoelectric points (pI) for the proteins present in some of the extracts were determined. The values ranged from approximately 8000 to 106 000 Da and the pI values from nearly 4.0 to 5.85. This is important because the major allergens from inhalants are mostly acidic proteins with molecular weights in the range of 20 000–40 000 Da.  相似文献   

5.
The pollen contents at different heights (1.5 and 15 m) of species of the Urticaceae family have been studied by sampling with Hirst type volumetric samplers. In order to achieve this, the two pollen types belonging to this family have been treated separately,Urtica urens-Parietaria sp. on the one hand andUrtica membranacea on the other, the latter having a smaller pollen grain. The results show that meteorological factors are bound to influence the behaviour of both these types of pollen in relation to height. With damp weather the pollen contents vary very slightly at different heights while when the weather is dry and calm, differences in pollen content at different heights become more significant. Nevertheless, when the atmosphere is stratified, the behaviour of each pollen type is different. The results show that, for most of the months considered, there is a higher pollen content ofU. membranacea at upper heights, whileU. urens-Parietaria sp. has higher levels of pollen content at a lower height. High temperatures, absence of rain and calm weather conditions favour the presence of convective phenomena which in turn create a favourable atmosphere for the vertical transportation of the small pollen grains ofU. membranacea, which are better represented in the samplers placed at 15 m.  相似文献   

6.
Meteorological effects on variation of airborne algae in Mexico   总被引:2,自引:0,他引:2  
Sixteen species of algae were collected from 73.8 m3 of air. Eleven were obtained in Minatitlán and eleven in México City. The data show that similar diversity occurred between the two localities, in spite of the difference in altitude. This suggests that cosmopolitan airborne microorganisms might have been released from different sources. Three major algal divisions (Chlorophyta, Cyanophyta and Chrysophyta) formed the airborne algal group. Also, a large concentration of 2220 algae m–3 was found near sea-level, while lower amounts were recorded at the high altitude of México City. The generaScenedesmus, Chlorella andChlorococcum dominated. Striking relationships were noted between the concentration of airborne green and blue-green algae, and meteorological conditions such as rain, vapour pressure, temperature and winds for different altitudes. In Minatitlán a linear relationship was established between concentration of algae and both vapour pressure (mbar) and temperature (° C), while in México City the wind (m s–1) was associated with variations in the algal count.  相似文献   

7.
This study analyses the atmospheric concentration of Platanus pollen in four stations in the Madrid region over a period of 10 years (1994–2003). Various statistical analyses (regression analysis and decision tree) were used to prepare a forecasting model for possible application as a preventive measure in pollinosis. The data comes from the PALINOCAM network and the samplers used were Hirst type (Burkard pollen trap). Platanus pollen is present in the atmosphere during a short period of time in spring, and the maximum concentrations are detected during the last two weeks of March and the first week of April. Regression analysis shows that the pollen concentration of the two previous days is the best predictive variable. The models obtained for the four stations analysed account for between 37 and 61% of the variation in pollen levels in the air. The decision trees show how the introduction of meteorological variables improves prediction for this pollen type.  相似文献   

8.
A two-year aeropalynological study performed during January 14, 1993 to December 31, 1994 in Taipei City revealed 154 different pollen taxa, with the most frequent beingBroussonetia (31.3%),Trema (15%),Bischofia (6.9%),Mallotus (6.8%),Cyathea (3.8%),Morus (3.7%),Fraxinus (2.9%) and Gramineae (2.8%), respectively. Two quantitative peaks of pollen grains appeared in March and in September in 1993, but only one peak in 1994. The dominant pollen taxa during these two peaks wereBroussonetia andMallotus. The heavy rain in February 1994 seemed to have delayed the first pollen peak to April, butBroussonetia was still the most frequent taxon. After July 1994, six typhoons brought heavy precipitation to northern Taiwan. Different weather types might have an effect on the concentration of airborne pollen grains, so that the timing of quantitative peaks was different in the two studied years. Arboreal pollen (AP), non-arboreal pollen (NAP) and fern spores (FS) constituted 81.7%, 7.7% and 7.8% of the two-year sum, respectively. AP dominated from January to June, NAP in November and fern spores in July. Native species in the Taipei Basin and trees along urban roadsides were the common sources of airborne pollen. The pollen calendar of two years in Taipei City was submitted.  相似文献   

9.
Birch pollen is a very common cause of pollinosis in Hokkaido, northern Japan. Birch airborne pollen concentrations vary each year; hence, the development of a method for predicting annual airborne pollen concentration is very important in preventing widespread symptoms of pollinosis. In the current study, we investigated airborne pollen counts and male catkin numbers (male flower index) of birch in four cities of Hokkaido between 2002 and 2008. Airborne pollen surveys were conducted using Durham’s sampler, and male catkin numbers determined for three major birch species (Betula platyphylla var. japonica, B. emanii, and B. maximowicziana). We found an annual variation in male flower index for all the three birch species investigated. This variation worked in combination with the amount of precipitation during the pollen season to influence total birch pollen counts. In conclusion, the male catkin numbers of three major birch species reliably predict airborne pollen counts in Hokkaido, but only when the effect of precipitation during pollen season is considered.  相似文献   

10.
The present article deals with the efficacy of seed hairs of poplar trees (Populus spp.) as a potent natural airborne pollen trap. Different species of Populus are commonly found planted along the streets in the cities of North China. The seed hairs and pericarp of poplar trees were collected from the trees and on the ground in Beijing Botanical Garden of Chinese Academy of Sciences and around Miyun Reservoir during May 2005 for pollen analysis. Different pollen spectra are recorded from different samples and are characterised by dominant occurrence of pollen grains of arboreal and anemophilous plants. In addition, pollen grains of non‐arboreal plants including grasses are also found trapped. Among the 46 trapped pollen grains, 26 are known to be allergenic. This study suggests that poplar seed hairs possibly make people feel uncomfortable due to the presence of allergenic pollen trapped in the hairs.  相似文献   

11.
A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).  相似文献   

12.
The content of herbaceous pollen in the atmosphere depends on the vegetal cover, climate and the weather and geographical conditions. The aim of the study reported here was to compare aerobiological data obtained from pollen monitoring stations located at sites differing with respect to their flora and microclimate – i.e. a town and a rural area. A volumetric method was used for sampling. In each microscopic preparation 12 vertical strips corresponding with 2-h intervals were analysed. A 90% method was used to determine the pollen season. The results were statistically verified using the u test and the Kolmogorov-Smirnov, Spearman and Wilcoxon tests. Higher values of the Seasonal Pollen Index (SPI), higher daily average concentrations and higher peak values were recorded in the rural area. An analysis of intradiurnal variations of airborne pollen showed that apart from the Poaceae the number of pollen grains in the air began to increase earlier in the day in the rural area; in the case of Rumex and Ambrosia, the maximum values also appeared a few hours earlier. For all the taxa investigated, the analysis of correlation showed a significant association between the daily average concentrations at both sites. The weakest association occurred for Plantago lanceolata; for all other taxa, the determination coefficients (R 2) were high. The results of the Wilcoxon test showed that, despite the strong positive association between daily concentrations of the pollen types investigated, there were differences in mean pollen concentrations in the overlapping pollen season. Mean concentrations of Poaceae and Rumex airborne pollen were significantly higher in the rural area in both years, and those of Urtica and P. lanceolata were significantly higher only in 2002.  相似文献   

13.
The daily and seasonal distribution of airborne fungal particles was recorded in a high altitude tropical zone. Sampling was carried out in the southern part of Mexico City. An Andersen air sampler was used over a period of six months. Ten minutes sampling for each set of plates was done at fixed schedule: 07:30, 14:00 and 19:00 hours. The sampler was placed 10 m above the ground. Daily variation was found to be associated with the season, weather and atmospheric stability. The highest value of mold counts (3195 CFU m−3) was recorded in the evening on October, a transitional month between the rainy and the dry seasons, the lowest (45 CFU m−3) at noon during the rainy season. Mold counts were significantly correlated with temperature, having negative signs both in the morning and at noon, and being positive in the evening. The abundance of only three genera was recorded.Cladosporium, was isolated more frequently, and its abundance at 14:00 h was of 38%;Alternaria represented 4.0%, at 14:00 h, andAspergillus 3.0% at 7:30 h. Fifteen species belonging to the latter genera were identified and most of them are considered as opportunistic molds of clinical significance.  相似文献   

14.
The long-term, 26 years’ data set of observations on daily concentrations of airborne grass pollen in Leiden is analyzed to present the variations and trends in quantities, and season starting dates. Monitoring of airborne pollen has been done continuously at one location, with a volumetric pollen trap. Annual totals of daily average grass-pollen concentrations are within a normal range of an urban site between 3690 and 9277, averagely 5510. The annual totals are irregularly fluctuating from year to year, and show no increasing or decreasing trend. Each year’s seasonal fluctuation is different, probably under the influence of changing weather conditions. The typical grass-pollen month is June. Using the Σ 75 criterium, the average starting date is on 16 May, whereas with the 1% threshold criterium the start of the grass-pollen season averagely is on 3 June. The mean air temperature in the preceding period is taken as the main factor for the timing of the season start. Analyzing the relationships of the two different criteria for the season starts with a number of temperature observation periods, the best relations were found between the mean air temperature in the period 11 April to 20 May and the Σ 75 criterium season start on 16 May (r=−0.78); and between the mean air temperature in May and the 1% threshold criterium season start on 3 June (r=−0.76). Forecasts of the season start which are significantly better than the average starting date are only possible with the mean air temperature up to a few days before the actual start. This limits the practical usefulness of the forecasting system.  相似文献   

15.
16.
First data from a pollen survey carried out in the city of Murcia (SE Spain) are given in this paper. Using a Burkard Volumetric Spore Trap, daily slides were prepared and 80 pollen types belonging to 51 families andAlternaria spores were identified and counted. Special attention was paid to 14 relevant taxa: Cupressaceae,Pinus, Genisteae,Olea, Morus, Acer, Platanus, Plantago, Quercus, Urticaceae, Poaceae, Chenopodiaceae,Artemisia andAlternaria. The main sources of airborne particles wereAlternaria (27.7%), Cupressaceae (13.5%),Olea (9.36%), Chenopodiaceae (8.31%) and Urticaceae (5.8%). Annual variations in pollen abundance and length of the flowering seasons are given for individual species and are related to environmental factors. Results indicate a main pollen season from March to June and a second minor season in September to October. The relatively high concentrations of Genisteae and the appearance of anArtemisia winter season were noted.  相似文献   

17.
The aim of this study was to improve the accuracy of aeropalynological models to forecast yields in areas with heterogeneous characteristics by applying principal component analysis to integrate the airborne pollen sampled from more than one trap. The sampling was performed during the past seven years (1998–2004) in the main northeast olive regions of Portugal. Annual crop production was forecasted on the basis of airborne pollen concentration measured at flowering, comparing the performance of three different independent variables: total airborne pollen concentration sampled in each trap and a derived variable that was determined by principal component analysis of the total airborne pollen concentration sampled. The best predictive results were obtained using a logarithmic relationship with airborne pollen concentration principal component scores describing about 97% of olive fruit production variability over the last seven years. The use of this technique improved the ability of pollen to explain the production interannual variations by about 13%. The comparison between actual reported and the adjusted production showed an average spread deviation of 5%.  相似文献   

18.
A volumetric aeropalynological sampling was carried out for the first time in MontevideoUruguay, from October 2000 to September 2001, using a Rotorod sampler Model 40. During the year 76 pollen types were identified. Airborne pollen was recorded over the year but a maximum pollen period was observed from August to April. For the rest of the months, pollen concentration was below 1% of the total annual pollen (TP). The pollen spectrum was characterized by the dominance of herbaceous pollen (NAP), which represented 68% of the TP and dominates the spectrum from November to March. Poaceae was the most frequent and abundant pollen type accounting for 45% of TP. The pollen spectrum reflected the floristic diversity of the city and most of the sources of airborne pollen are present in local and regional flora. Fourteen pollen types reach more than 1% of the TP and most of them are cited as allergenic pollen in other regions. These results may prove important for future medical research.  相似文献   

19.
空气致敏花粉污染研究进展   总被引:3,自引:1,他引:3  
李倩  靳颖  华振玲  刘家熙 《生态学报》2005,25(2):334-338
对空气致敏花粉污染概念的提出 ,空气致敏花粉污染的特点和影响因素 ,花粉采集方法的改进以及空气致敏花粉污染的研究进展等方面进行了总结 ,指出了研究中存在的问题 ,并对研究前景进行了展望  相似文献   

20.
The prevalence of airborne fungal spores and pollen grains in the indoor and outdoor environments of a coir factory in Thiruvananthapuram district of Kerala state, India was studied using the Burkard Personal Sampler and the Andersen 2-stage Sampler for 2 years (September 1997 to August 1999). The concentration of pollen grains was remarkably lower than that of fungal spores (ratio of 1:28). There was no large difference in the concentrations and types of fungal spores between the indoor and outdoor environments, with 26 spore types found to be present indoors and 27 types outdoors; of these, 22 were common to both the environments. Aspergillus/Penicillium, Cladosporium, ‘other basidiospores’ and ascospores were the dominant spore types. The total spore concentration was highest in February and lowest in September, and it was significantly higher in 1998–1999 than in 1997–1998. Twenty viable colony-forming types were isolated from inside the coir factory. The most dominant viable fungi isolated were Penicillium citrinum, Aspergillus flavus and Aspergillus niger. The total pollen concentration was higher in the outdoor environment of the coir factory than indoors, with 15 and 17 pollen types, respectively. Grass and Cocos nucifera pollen types were dominant. The dominant spore and pollen types trapped in the two environments of the coir factory are reportedly allergenic and, consequently, workers are at risk of catching respiratory/allergic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号