首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation of tyrosine, and to a lesser extent threonine and serine, plays a key role in the regulation of signal transduction during a plethora of eukaryotic cell functions, including cell activation, cell-cycle progression, cytoskeletal rearrangement and cell movement, differentiation, apoptosis and metabolic homeostasis. In vivo, tyrosine phosphorylation is reversible and dynamic; the phosphorylation states are governed by the opposing activities of protein tyrosine kinases (PTKs)2 and protein tyrosine phosphatases (PTPs). Reactive oxygen species (ROS) act as cellular messengers in cellular processes such as mitogenic signal transduction, gene expression, regulation of cell proliferation, senescence and apoptosis. Redox regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of thiols in PTPs leads to their inactivation by the formation of either an intramolecular S–S bridge or a sulfenyl–amide bond. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that guides to sustained activation of PTKs. This review focuses on the redox regulation of both PTPs and PTKs and the interplay of their specular regulation.  相似文献   

2.
Growth factors and cytokines appear to stimulate the intracellular production of reactive oxygen species (ROS). Evidence suggests that this alteration in the cellular redox state is essential for downstream signaling, but the precise mechanism has remained elusive. A new study now demonstrates that ligand-stimulated intracellular hydrogen peroxide can specifically and reversibly regulate the activity of protein tyrosine phosphatases.  相似文献   

3.
Affiliative social motivation and behavior, that is, sociability that includes attachment, prosocial behavior (sharing, caring and helping) and empathy (the ability to understand and share the feelings of others), has high variability in the human population, with a portion of people outside of the normal range. While psychiatric disorders and autism spectrum disorders are typically associated with a deficit in social behavior, the opposite trait of hypersociability and indiscriminate friendliness are exhibited by individual with specific neurodevelopmental disorders and following early adverse care. Here we discuss both genetic and environmental factors that cause or increase the risk for developing pathological hypersociability from human to rodent models.  相似文献   

4.
Protein-tyrosine phosphatases: the other side of the coin   总被引:37,自引:0,他引:37  
T Hunter 《Cell》1989,58(6):1013-1016
  相似文献   

5.
6.
7.
Protein and DNA destabilization by osmolytes: the other side of the coin   总被引:1,自引:0,他引:1  
Singh LR  Poddar NK  Dar TA  Kumar R  Ahmad F 《Life sciences》2011,88(3-4):117-125
Osmolytes are naturally occurring small molecules accumulated intracellularly to protect organisms from various denaturing stresses. Similar to the two faces of a coin, several of these osmolytes are stabilizing and destabilizing proteins depending on the concentrations and/or solvent conditions. For example, the well known stabilizing osmolyte, trehalose destabilizes some proteins at high concentration and/or high pH. In spite of the fact that destabilizing aspects of osmolytes can modulate many cellular processes including regulation of protein homeostasis (proteostasis), protein-protein interaction, and protein-DNA interaction, researchers have mostly focused on the stabilizing aspects of osmolytes. Thus, it is important to look into both aspects of osmolytes to determine their precise role under physiological conditions. In this article, we have discussed both stabilizing and destabilizing/denaturant aspects of osmolytes to uncover both sides of the coin.  相似文献   

8.
Redox redux: revisiting PTPs and the control of cell signaling   总被引:24,自引:0,他引:24  
Tonks NK 《Cell》2005,121(5):667-670
The architecture of the active site of members of the protein tyrosine phosphatase (PTP) superfamily renders these enzymes sensitive to reversible oxidation and inactivation. The importance of reversible oxidation of PTP superfamily members in controlling the signal output following an extracellular stimulus is discussed.  相似文献   

9.
Over the last quarter century several genetic alterations have been implicated in hereditary breast cancer (HBC). Two papers recently published in the New England Journal of Medicine explored the mutation prevalence in breast cancer predisposition genes across a large population of affected and unaffected subjects. These analyses designated ATM, BARD1, BRCA1, BRCA2, CHEK2, PALB2, RAD51C and RAD51D as the core set of genes associated with a significantly increased risk of developing breast cancer. A deeper understanding of the biological role of these genes unearths an intricate mechanism involving DNA repair and cell cycle regulation. Exploiting these inherited alterations for targeted treatments, as is currently the case with PARP inhibitors, may provide additional therapeutic opportunities for HBC patients.  相似文献   

10.
Summary The synthesis of amphiphilic flavins substituted with C18-hydrocarbon sidechains in positions 3, 5, 7, 8 and 10 is described. 3-, 7-, and 10-amphiflavins were obtained by new total syntheses. Furthermore, 3-amphiflavin was obtained by C18-alkylation of natural flavin in the oxidized state, whereas 5-amphi(dihydro)flavin was obtained by alkylation under reducing conditions.In the course of these studies, a novel, selective oxidation reaction was found taking place with the 8-methyl group of natural flavins. In this way lumiflavin and riboflavin derivatives could be converted directly to flavin-8-nor-8-carboxylic acids or the corresponding alkyl esters.The new flavin derivatives lend themselves for incorporation into lipid vesicles, thus yielding the basis for model studies of anisotropic flavin chemistry and redox transfer through membranes, as described in the concomitant paper (Schmidt, W., Hemmerich, P. 1981).J. Membrane Biol. 59:129. The new flavins are characterized by means of absorption, fluorescence, and proton nuclear magnetic resonance spectroscopy.  相似文献   

11.
12.
13.
14.
15.
By recording leaf transmittance at 820 nm and quantifying the photon flux density of far red light (FRL) absorbed by long-wavelength chlorophylls of Photosystem I (PS I), the oxidation kinetics of electron carriers on the PS I donor side was mathematically analyzed in sunflower (Helianthus annuus L.), tobacco (Nicotiana tabacum L.) and birch (Betula pendula Roth.) leaves. PS I donor side carriers were first oxidized under FRL, electrons were then allowed to accumulate on the PS I donor side during dark intervals of increasing length. After each dark interval the electrons were removed (titrated) by FRL. The kinetics of the 820 nm signal during the oxidation of the PS I donor side was modeled assuming redox equilibrium among the PS I donor pigment (P700), plastocyanin (PC), and cytochrome f plus Rieske FeS (Cyt f + FeS) pools, considering that the 820 nm signal originates from P700+ and PC+. The analysis yielded the pool sizes of P700, PC and (Cyt f + FeS) and associated redox equilibrium constants. PS I density varied between 0.6 and 1.4 μmol m−2. PS II density (measured as O2 evolution from a saturating single-turnover flash) ranged from 0.64 to 2.14 μmol m−2. The average electron storage capacity was 1.96 (range 1.25 to 2.4) and 1.16 (range 0.6 to 1.7) for PC and (Cyt f + FeS), respectively, per P700. The best-fit electrochemical midpoint potential differences were 80 mV for the P700/PC and 25 mV for the PC/Cyt f equilibria at 22 °C. An algorithm relating the measured 820 nm signal to the redox states of individual PS I donor side electron carriers in leaves is presented. Applying this algorithm to the analysis of steady-state light response curves of net CO2 fixation rate and 820 nm signal shows that the quantum yield of PS I decreases by about half due to acceptor side reduction at limiting light intensities before the donor side becomes oxidized at saturating intensities. Footnote: This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
17.
Although it has been well established that acclimation to low growth temperatures is strongly correlated with an increased proportion of reduced QA in all photosynthetic groups, the precise mechanism controlling the redox state of QA and its physiological significance in developing cold tolerance in photoautotrophs has not been fully elucidated. Our recent thermoluminescence (TL) measurements of the acceptor site of PSII have revealed that short‐term exposure of the cyanobacterium Synechococcus sp. PCC 7942 to cold stress, overwintering of Scots pine (Pinus sylvestris L.), and acclimation of Arabidopsis plants to low growth temperatures, all caused a substantial shift in the characteristic TM of S2QB recombination to lower temperatures. These changes were accompanied by much lower overall TL emission, restricted electron transfer between QA and QB, and in Arabidopsis by a shift of the S2QA‐related peak to higher temperatures. The shifts in recombination temperatures are indicative of a lower activation energy for the S2QB redox pair and a higher activation energy for the S2QA redox pair. This results in an increase in the free‐energy gap between P680+QA and P680+Pheo and a narrowing of the free energy gap between QA and QB electron acceptors. We propose that these effects result in an increased population of reduced QA (QA), facilitating non‐radiative P680+QA radical pair recombination within the PSII reaction centre. The proposed reaction centre quenching could be an important protective mechanism in cyanobacteria in which antenna and zeaxanthin cycle‐dependent quenching are not present. In herbaceous plants, the enhanced capacity for dissipation of excess light energy via PSII reaction centre quenching following cold acclimation may complement their capacity for increased utilization of absorbed light through CO2 assimilation and carbon metabolism. During overwintering of evergreens, when photosynthesis is inhibited, PSII reaction centre quenching may complement non‐photochemical quenching within the light‐harvesting antenna when zeaxanthin cycle‐dependent energy quenching is thermodynamically restricted by low temperatures. We suggest that PSII reaction centre quenching is a significant mechanism enabling cold‐acclimated organisms to acquire increased resistance to high light.  相似文献   

18.
Genotyping of 2 well‐known weevil species from the genus Ceutorhynchus (Coleoptera: Curculionidae) distributed in west Palearctic, C. erysimi and C. contractus, revealed phenotype versus genotype inconsistencies in a set of 56 specimens (25 C. erysimi and 31 C. contractus) collected from 25 locations in Serbia and Montenegro. An analysis of the mitochondrial cytochrome oxidase subunit I gene (COI), widely used as a barcoding region, and a nuclear gene, elongation factor‐1α (EF‐1α), revealed stable genetic divergence among these species. The average uncorrected pairwise distances for the COI and EF‐1α genes were 3.8%, and 1.3%, respectively, indicating 2 genetically well‐segregated species. However, the genetic data were not congruent with the phenotypic characteristics of the studied specimens. In the first place, C. erysimi genotypes were attached to specimens with phenotypic characteristics of C. contractus. Species‐specific PCR‐RFLP assays for the barcoding gene COI were applied for the molecular identification of 101 additional specimens of both morphospecies (33 C. erysimi and 68 C. contractus) and were found to confirm this incongruity. The discrepancy between the genetic and morphological data raises the question of the accuracy of using a barcoding approach, as it may result in misleading conclusions about the taxonomic position of the studied organism. Additionally, the typological species concept shows considerable weakness when genetic data are not supported with phenotypic characteristics as in case of asymmetric introgression, which may cause certain problems, especially in applied studies such as biological control programs in which the biological properties of the studied organisms are the main focus.  相似文献   

19.
Recent findings on clathrin-dependent and non clathrin-dependent endocytic routes are currently changing our classical view of endocytosis. Originally seen as a way for the cell to internalize membrane, receptors or various soluble molecules, this process is in fact directly linked to complex signaling pathways. Here, we review new insights in endocytosis and present latest development in imaging techniques that allow us to visualize and follow the dynamics of membrane-associated signaling events at the plasma membrane and other intracellular compartments. The immune synapse is taken as an illustration of the importance of membrane reorganization and proteins clustering to initiate and maintain signaling. Future challenges include understanding the crosslink between traffic and signaling and how all compartmentalized signals are integrated inside the cell at a higher level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号