首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylation of tyrosine, and to a lesser extent threonine and serine, plays a key role in the regulation of signal transduction during a plethora of eukaryotic cell functions, including cell activation, cell-cycle progression, cytoskeletal rearrangement and cell movement, differentiation, apoptosis and metabolic homeostasis. In vivo, tyrosine phosphorylation is reversible and dynamic; the phosphorylation states are governed by the opposing activities of protein tyrosine kinases (PTKs)2 and protein tyrosine phosphatases (PTPs). Reactive oxygen species (ROS) act as cellular messengers in cellular processes such as mitogenic signal transduction, gene expression, regulation of cell proliferation, senescence and apoptosis. Redox regulated proteins include PTPs and PTKs, although with opposite regulation of enzymatic activity. Transient oxidation of thiols in PTPs leads to their inactivation by the formation of either an intramolecular S–S bridge or a sulfenyl–amide bond. Conversely, oxidation of PTKs leads to their activation, either by direct SH modification or, indirectly, by concomitant inhibition of PTPs that guides to sustained activation of PTKs. This review focuses on the redox regulation of both PTPs and PTKs and the interplay of their specular regulation.  相似文献   

2.
Together with protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs) serve as hallmarks in cellular signal transduction by controlling the reversible phosphorylation of their substrates. The human genome is estimated to encode more than 100 PTPs, which can be divided into eleven sub-groups according to their structural and functional characteristics. All the crystal structures of catalytic domains of sub-groups have been elucidated, enabling us to understand their precise catalytic mechanism and to compare their structures across all sub-groups. In this review, I describe the structure and mechanism of catalytic domains of PTPs in the structural context. [BMB Reports 2012; 45(12): 693-699]  相似文献   

3.
Colorectal cancer is one of the most common oncogenic diseases in the Western world. Several cancer associated cellular pathways have been identified, in which protein phosphorylation and dephosphorylation, especially on tyrosine residues, are one of most abundant regulatory mechanisms. The balance between these processes is under tight control by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Aberrant activity of oncogenic PTKs is present in a large portion of human cancers. Because of the counteracting role of PTPs on phosphorylation-based activation of signal pathways, it has long been thought that PTPs must act as tumor suppressors. This dogma is now being challenged, with recent evidence showing that dephosphorylation events induced by some PTPs may actually stimulate tumor formation. As such, PTPs might form a novel attractive target for anticancer therapy. In this review, we summarize the action of different PTPs, the consequences of their altered expression in colorectal cancer, and their potential as target for the treatment of this deadly disease.  相似文献   

4.
The protein tyrosine kinase (PTK) Csk is a potent negative regulator of several signal transduction processes, as a consequence of its exquisite ability to inactivate Src-related PTKs. This function requires not only the kinase domain of Csk, but also its Src homology 3 (SH3) and SH2 regions. We showed previously that the Csk SH3 domain mediates highly specific associations with two members of the PEP family of nonreceptor protein tyrosine phosphatases (PTPs), PEP and PTP-PEST. In comparison, the Csk SH2 domain interacts with several tyrosine phosphorylated molecules, presumed to allow targetting of Csk to sites of Src family kinase activation. Herein, we attempted to understand better the regulation of Csk by identifying ligands for its SH2 domain. Using a modified yeast two-hybrid screen, we uncovered the fact that Csk associates with PTP-HSCF, the third member of the PEP family of PTPs. This association was documented not only in yeast cells but also in a heterologous mammalian cell system and in cytokine-dependent hemopoietic cells. Surprisingly, the Csk-PTP-HSCF interaction was found to be mediated by the Csk SH2 domain and two putative sites of tyrosine phosphorylation in the noncatalytic portion of PTP-HSCF. Transfection experiments indicated that Csk and PTP-HSCF synergized to inhibit signal transduction by Src family kinases and that this cooperativity was dependent on the domains mediating their association. Finally, we obtained evidence that PTP-HSCF inactivated Src-related PTKs by selectively dephosphorylating the positive regulatory tyrosine in their kinase domain. Taken together, these results demonstrate that part of the function of the Csk SH2 domain is to mediate an inducible association with a PTP, thereby engineering a more efficient inhibitory mechanism for Src-related PTKs. Coupled with previously published observations, these data also establish that Csk forms complexes with all three known members of the PEP family.  相似文献   

5.
Protein tyrosine phosphorylation is a fundamental regulatory mechanism controlling cell proliferation, differentiation, communication, and adhesion. Disruption of this key regulatory mechanism contributes to a variety of human diseases including cancer, diabetes, and auto-immune diseases. Net protein tyrosine phosphorylation is determined by the dynamic balance of the activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). Mammals express many distinct PTKs and PTPs. Both of these families can be sub-divided into non-receptor and receptor subtypes. Receptor protein tyrosine kinases (RPTKs) comprise a large family of cell surface proteins that initiate intracellular tyrosine phosphorylation-dependent signal transduction in response to binding of extracellular ligands, such as growth factors and cytokines. Receptor-type protein tyrosine phosphatases (RPTPs) are enzymatic and functional counterparts of RPTKs. RPTPs are a family of integral cell surface proteins that possess intracellular PTP activity, and extracellular domains that have sequence homology to cell adhesion molecules. In comparison to extensively studied RPTKs, much less is known about RPTPs, especially regarding their substrate specificities, regulatory mechanisms, biological functions, and their roles in human diseases. Based on the structure of their extracellular domains, the RPTP family can be grouped into eight sub-families. This article will review one representative member from each RPTP sub-family.  相似文献   

6.
RAFTK/Pyk2-mediated cellular signalling   总被引:1,自引:0,他引:1  
Intracellular signal transduction following extracellular ligation by a wide variety of surface molecules involves the activation and tyrosine phosphorylation of protein tyrosine kinases (PTKs). Tyrosine phosphorylation, controlled by the coordinated actions of protein tyrosine phosphatases (PTPs) and tyrosine kinases, is a critical regulatory mechanism for various physiological processes, including cell growth, differentiation, metabolism, cell cycle regulation and cytoskeleton function. The focal adhesion PTK family consists of the focal adhesion kinase (FAK) and the RAFTK/Pyk2 kinase (also known as CAK-beta and CADTK). RAFTK/Pyk2 can be activated by a variety of extracellular signals that elevate intracellular calcium concentration, and by stress signals. RAFTK/Pyk2 is expressed mainly in the central nervous system and in cells derived from hematopoietic lineages, while FAK is widely expressed in various tissues and links transmembrane integrin receptors to intracellular pathways. This review describes the role of RAFTK/Pyk2 in various signalling cascades and details the differential signalling by FAK and RAFTK/Pyk2.  相似文献   

7.
A C Chan  M Iwashima  C W Turck  A Weiss 《Cell》1992,71(4):649-662
Protein-tyrosine kinases (PTKs) play an integral role in T cell activation. Stimulation of the T cell antigen receptor (TCR) results in tyrosine phosphorylation of a number of cellular substrates. One of these is the TCR zeta chain, which can mediate the transduction of extracellular stimuli into cellular effector functions. We have recently identified a 70 kd tyrosine phosphoprotein (ZAP-70) that associates with zeta and undergoes tyrosine phosphorylation following TCR stimulation. Here we report the isolation of a cDNA clone encoding ZAP-70. ZAP-70 represents a novel PTK and is expressed in T and natural killer cells. Moreover, tyrosine phosphorylation and association of ZAP-70 with zeta require the presence of src family PTKs and provide a potential mechanism by which the src family PTKs and ZAP-70 may interact to mediate TCR signal transduction.  相似文献   

8.
Oncogenes,protein tyrosine kinases,and signal transduction   总被引:1,自引:0,他引:1  
Many oncogenes encode protein tyrosine kinases (PTKs). Oncogenic mutations of these genes invariably result in constitutive activation of these PTKs. Autophosphorylation of the PTKs and tyrosine phosphorylation of their cellular substrates are essential events for transmission of the mitogenic signal into cells. The recent discovery of the characteristic amino acid sequences, of thesrc homology domains 2 and 3 (SH2 and SH3), and extensive studies on proteins containing the SH2 and SH3 domains have revealed that protein tyrosine-phosphorylation of PTKs provides phosphotyrosine sites for SH2 binding and allows extracellular signals to be relayed into the nucleus through a chain of protein-protein interactions mediated by the SH2 and SH3 domains. Studies on oncogenes, PTKs and SH2/SH3-containing proteins have made a tremendous contribution to our understanding of the mechanisms for the control of cell growth, oncogenesis, and signal transduction. This review is intended to provide an outline of the most recent progress in the study of signal transduction by PTKs.  相似文献   

9.
Bixby JL 《IUBMB life》2001,51(3):157-163
Virtually every aspect of cellular proliferation and differentiation is regulated by changes in tyrosine phosphorylation. Tyrosine phosphorylation, in turn, is controlled by the opposing activities of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). PTKs are often transmembrane proteins (receptor PTKs) whose enzymatic activities and signaling functions are tightly regulated by the binding of specific ligands. A variety of transmembrane PTPs has also been identified; these proteins are called receptor PTPs (RPTPs), but in most cases their roles as receptors are very poorly understood. This review discusses the evidence that RPTPs are actually receptors for extrinsic ligands, and the extent to which interactions with putative ligands are known or suspected to cause changes in enzymatic activity. Finally, some of the RPTP substrates believed to be physiologically important are described. The evidence gathered to date suggests that models derived from studies of receptor PTKs may be too simple to account for the diversity and complexity of mechanisms through which ligand binding controls RPTP function.  相似文献   

10.
Many studies have illustrated that the production of reactive oxygen species (ROS) is important for optimal tyrosine phosphorylation and signaling in response to diverse stimuli. Protein-tyrosine phosphatases (PTPs), which are important regulators of signal transduction, are exquisitely sensitive to inhibition after generation of ROS, and reversible oxidation is becoming recognized as a general physiological mechanism for regulation of PTP function. Thus, production of ROS facilitates a tyrosine phosphorylation-dependent cellular signaling response by transiently inactivating those PTPs that normally suppress the signal. In this study, we have explored the importance of reversible PTP oxidation in the signaling response to insulin. Using a modified ingel PTP assay, we show that stimulation of cells with insulin resulted in the rapid and transient oxidation and inhibition of two distinct PTPs, which we have identified as PTP1B and TC45, the 45-kDa spliced variant of the T cell protein-tyrosine phosphatase. We investigated further the role of TC45 as a regulator of insulin signaling by combining RNA interference and the use of substrate-trapping mutants. We have shown that TC45 is an inhibitor of insulin signaling, recognizing the beta-subunit of the insulin receptor as a substrate. The data also suggest that this strategy, using ligand-induced oxidation to tag specific PTPs and using interference RNA and substrate-trapping mutants to illustrate their role as regulators of particular signal transduction pathways, may be applied broadly across the PTP family to explore function.  相似文献   

11.
Reactive oxygen species (ROS) are constantly produced in the human body and are involved in the pathogenesis of aging, cardiovascular diseases, and cancer. Emerging evidence indicates that oxidation and inhibition of protein tyrosine phosphatases (PTPs) are critical for ROS signal transduction. However, the role of individual PTPs in ROS signaling remains unclear. Here, we demonstrated that the receptor-like PTP alpha (RPTP alpha) was an effector of H2O2, the most stable form of ROS. H2O2 at nontoxic concentration rapidly induced the association of RPTP alpha with Src family kinases, platelet-derived growth factor receptor-beta, and protein kinase D in various cultured cells, although it markedly suppressed RPTP alpha phosphorylation on Tyr-789. We further identified that RPTP alpha selectively regulated the signal transduction pathways induced by H2O2. Particularly, RPTP alpha was required for the activation of protein kinase D and for the modulation of p130Cas tyrosine phosphorylation in response to H2O2. In contrast, the H2O2-induced inactivation of Src family kinases and suppression of paxillin phosphorylation on Tyr-118 were both largely independent of RPTP alpha. Our findings indicate that H2O2 signaling pathways are selectively regulated by RPTP alpha in cells, which may provide new insights into the functional regulation of ROS signal transduction by PTPs.  相似文献   

12.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

13.
Protein tyrosine kinases (PTKs) play key roles in starting the signal transduction network for cellular development and functions. A number of both receptor-type and non-receptor-type PTKs, which are normally at a resting state, are initially activated in association with functions of the cell membrane and membrane rafts. Results of recent studies have suggested that these membrane-associated mechanisms for activation of PTKs consist of the two steps that are under redox control. The first step is activation of cell surface receptors through chemical crosslinkage or aggregation of receptors and membrane rafts, which leads to production of reactive oxygen species (ROS) as second messengers of intracellular signal transduction. The second step involves chemical modification of PTKs at the highly conserved cysteine in the MXXCW motif as a global switch for starting the tyrosine phosphorylation-dependent local switch for activation of the catalytic activity of the enzyme.  相似文献   

14.
Tyrosine phosphorylation-dependent signalling, controlled by the opposing actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), is typically associated with the cellular response to mitogens in G1. However, a growing number of studies indicate that PTKs and PTPs can have important roles in cellular division beyond this initial phase of the cell cycle. In this Perspective we discuss the impact and contributions of PTKs and PTPs to cell cycle checkpoints. We focus on the replication checkpoint and our recent findings that demonstrate that the attenuation of PTK-mediated STAT3 signalling for the depletion of cyclin D1, works in concert with ATR-instigated cascades for the suppression of S-phase progression. We argue for the need for integrated responses and highlight the potential for oncogenic PTK pathways to bypass the replication checkpoint and contribute to genomic instability.  相似文献   

15.
Abundant evidence has indicated that protein tyrosine kinases (PTKs) convey signals from G protein-coupled receptors (GPCRs) to regulate cell proliferation, migration, adhesion, and potentialy cellular transformation. Molecular mechanisms by which PTKs regulate such diverse effects in GPCR signaling are not well understood. Recently, an unifying theme has emerged where both growth factors and GPCRs utilize protein tyrosine kinase activity and the highly conserved Ras/MAP kinase pathway to control mitogenic signals. Additionally, PTKs are also involved in the regulation of signal transmission from GPCRs to activation of the JNK/SAPK kinase pathway. Furthermore novel insights in chemokine receptor-activated PTKs and their role in mediating cell functions are discussed in this review.  相似文献   

16.
In B cells, two classes of protein tyrosine kinases (PTKs), the Src family of PTKs (Lyn, Fyn, Lck, and Blk) and non-Src family of PTKs (Syk), are known to be involved in signal transduction induced by the stimulation of the B-cell antigen receptor (BCR). Previous studies using Lyn-negative chicken B-cell clones revealed that Lyn is necessary for transduction of signals through the BCR. The kinase activity of the Src family of PTKs is negatively regulated by phosphorylation at the C-terminal tyrosine residue, and the PTK Csk has been demonstrated to phosphorylate this C-terminal residue of the Src family of PTKs. To investigate the role of Csk in BCR signaling, Csk-negative chicken B-cell clones were generated. In these Csk-negative cells, Lyn became constitutively active and highly phosphorylated at the autophosphorylation site, indicating that Csk is necessary to sustain Lyn in an inactive state. Since the C-terminal tyrosine phosphorylation of Lyn is barely detectable in the unstimulated, wild-type B cells, our data suggest that the activities of Csk and a certain protein tyrosine phosphatase(s) are balanced to maintain Lyn at a hypophosphorylated and inactive state. Moreover, we show that the kinase activity of Syk was also constitutively activated in Csk-negative cells. The degree of activation of both the Lyn and Syk kinases in Csk-negative cells was comparable to that observed in wild-type cells after BCR stimulation. However, BCR stimulation was still necessary in Csk-negative cells to elicit tyrosine phosphorylation of cellular proteins, as well as calcium mobilization and inositol 1,4,5-trisphosphate generation. These results suggest that not only activation of the Lyn and Syk kinases but also additional signals induced by the cross-linking of the BCR are required for full transduction of BCR signaling.  相似文献   

17.
Tyrosine phosphorylation plays an important role in controlling cellular growth, differentiation and function. Abnormal regulation of tyrosine phosphorylation can result in human diseases such as cancer. A major challenge of signal transduction research is to determine how the initial activation of protein-tyrosine kinases (PTKs) by extracellular stimuli triggers multiple downstream signaling cascades, which ultimately elicit diverse cellular responses. Recent studies reveal that members of the Gab/Dos subfamily of scaffolding adaptor proteins (hereafter, "Gab proteins") play a crucial role in transmitting key signals that control cell growth, differentiation and function from multiple receptors. Here, we review the structure, mechanism of action and function of these interesting molecules in normal biology and disease.  相似文献   

18.
The T cell antigen receptor complex (TCR) and the interleukin 2 (IL-2) receptor are responsible for signal transduction that results in T lymphocyte activation and proliferation. Stimulation of either the TCR or the IL-2 receptor induces an increase in tyrosine phosphorylation of several cellular proteins indicating that signal transduction by both of these receptors involves the activation of a tyrosine protein kinase. Although the tyrosine protein kinases activated by these receptors have not yet been characterized the receptors themselves are known not to contain a tyrosine protein kinase domain. To determine if these receptors are coupled to the activation of similar or distinct tyrosine protein kinases we examined the patterns and kinetics of tyrosine phosphorylation induced by stimulation of these receptors on a cloned cell line. Hut 78.3 cells co-express the TCR and the p75 IL-2 receptor. These cells were stimulated with either OKT3 antibodies, specific for the TCR, or with IL-2. Signal transduction by these receptors was found to increase the tyrosine phosphorylation of a set of proteins unique to each stimulus. The kinetics of the tyrosine phosphorylation induced by OKT3 antibodies also differed from that induced by IL-2. The OKT3-dependent tyrosine phosphorylation reached maximal levels within 2.5 min and began to decline by 5 min after stimulation. In contrast, the IL-2-induced tyrosine phosphorylation did not achieve maximal levels until 15 min after the addition of IL-2 and the proteins remained phosphorylated even after 60 min of incubation. In addition the tyrosine phosphorylations induced by OKT3 and IL-2 were not affected by prior stimulation with the other agent. These results demonstrate that the TCR and IL-2 receptor are coupled to different signal transduction pathways responsible for the independent activation of distinct tyrosine protein kinases.  相似文献   

19.
A number of evidence have been accumulated that the regulation of reversible tyrosine phosphorylation, which can be regulated by the combinatorial activity of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), plays crucial roles in various biological processes including differentiation. There are a total of 107 PTP genes in the human genome, collectively referred to as the "PTPome." In this study, we performed PTP profiling analysis of the HIB-1B cell line, a brown preadipocyte cell line, during brown adipogenesis. Through RT-PCR and real-time PCR, several PTPs showing differential expression pattern during brown adipogenesis were identified. In the case of PTP-RE, it was shown to decrease significantly until 4 days after brown adipogenic differentiation, followed by a dramatic increase at 6 days. The overexpression of PTP-RE led to decreased brown adipogenic differentiation via reducing the tyrosine phosphorylation of the insulin receptor, indicating that PTP-RE functions as a negative regulator at the early stage of brown adipogenesis.  相似文献   

20.
蛋白质分子中酪氨酸残基可逆性的磷酸化是细胞内信号分子传导的基本方式。两类作用相反的酶参与磷酸化的调节:蛋白酪氨酸激酶(protein tyrosinekinase,PTK)和蛋白酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)。含脯氨酸-谷氨酸-丝氨酸-苏氨酸(P-E-S-T)结构域的蛋白酪氨酸磷酸酶(PTP-PEST)属于非受体型酪氨酸磷酸酶类,其本身能与多种蛋白质相互作用,并在细胞迁移、免疫细胞活化和胚胎发育等生理过程中发挥重要作用。本文对PTP-PEST的结构特点、生理功效、介导的信号传导途径和近年来PTP-PEST在疾病中的作用作一综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号