首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rat liver biliverdin reductase was purified from control and bromobenzene-treated rats and was designated as C-BVR-T and B-BVR-T, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the existence of two molecular weight variants (30,100 and 29,800) in C-BVR-T but only one form (30,100) in B-BVR-T. Western immunoblotting confirmed that both molecular weight variants were biliverdin reductase. Nondenaturing electrophoresis separated C-BVR-T and B-BVR-T preparations into groups of four variants, designated as BVR ND1 to ND4. However, the C-BVR-T preparation contained three major forms (BVR ND1, ND2, and ND3) while the B-BVR-T preparation contained two major forms (BVR ND2 and ND3). In vitro treatment of biliverdin reductase preparations with either bromobenzene or dithiothreitol did not interconvert the variants of the enzyme. QAE-Sepharose anion-exchange chromatography was used to isolate the ND2 and ND3 variants for physiochemical analysis. The amino acid composition of the variants was rather similar except for their Tyr content. Also, the peptide maps were similar except for a series of moderately early chromatographic peaks. These findings implied secondary modifications to the protein rather than substantial differences in primary structure. The pH-dependent cofactor requirements for enzyme activity were examined. Both variants exhibited 2 pH optima that were cofactor dependent; maximum activity with NADPH and NADH was observed at pH 8.5 and 6.7, respectively. However, both variants exhibited a higher catalytic rate with NADH than with NADPH at their pH optima. Furthermore, BVR ND3 exhibited a higher catalytic rate than BVR ND2 with either cofactor throughout the pH range 6.5-9.  相似文献   

2.
Recently we have reported the detection of multiple net-charge and molecular mass variants of biliverdin reductase in the rat liver. We now report an apparent selective change in the electrophoretic profile of the reductase variants in the liver by in vivo bromobenzene treatment (2 mmol/kg, sc, 24 h). Using two-dimensional electrophoresis and isoelectric focusing, one molecular mass species of the reductase (Mr 30,400) appeared to be selectively suppressed by bromobenzene treatment. This molecular mass species was the main component of two isoelectric focusing bands with pI6.23 and 5.91. The effect in vivo of bromobenzene could not be duplicated by in vitro experiments involving treatment of purified enzyme with bromobenzene in the presence of a NADPH-dependent microsomal drug metabolizing system. The phenomenon of multiplicity of the reductase was not limited to the liver. Multiplicity of the enzyme was detected also in the spleen; however, the pattern of composition of the reductase variants vastly differed from that of the liver. In the spleen, variants with pI 5.76, 5.61, and 5.48 were the prevalent forms; the variant with pI 6.23 was absent, and pI 5.91 was present in a minute amount. Further, bromobenzene did not affect the composition pattern of net-charge variants in this organ. Also, the splenic biliverdin reductase activity was refractory to in vivo bromobenzene treatment, whereas the liver reductase activity with both NADH and NADPH was altered by the treatment. The possible significance of the presence of multiple variants of biliverdin reductase and the change in their composition caused by bromobenzene is discussed.  相似文献   

3.
S Kabir 《FEBS letters》1989,258(1):137-142
Human interleukin-1 beta (rhuIL-1 beta), obtained by DNA recombinant technology, was radiolabelled. Its isoelectric properties were determined by various analytical techniques such as high-voltage ultrathin layer isoelectric focusing (IEF) and chromatofocusing. The rhuIL-1 beta molecule had a molecular mass of 18 kDa, as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. When examined by IEF on a polyacrylamide gel of 1 mm thickness in the pH range of 3.5-9.5, it was resolved into two broad bands appearing in the pH range of 6.2-5.8 and 5.5-5.2. Each of the two bands was further resolved into multiple bands when electrofocused on (i) a thinner gel of 0.5 mm thickness and (ii) a narrower pH range of 5-8. Upon chromatofocusing in a liquid column, it was possible to isolate various charged components of rhuIL-1 beta. However, all these components reacted to the antiserum to rhuIL-1 beta and displayed a molecular mass of 18 kDa suggesting the charge heterogeneity of rhuIL-1 beta.  相似文献   

4.
Purified rat-liver dihydropteridine reductase is homogeneous by gel filtration (Mr approximately 51,000), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr approximately 25,500), and native polyacrylamide gel electrophoresis, suggesting that the enzyme is composed of two identical subunits. However, analysis by isoelectric focusing has revealed three enzyme forms with approximate isoelectric points of 6.5, 5.9, and 5.7 (designated forms, I, II, and III, respectively). The three forms, isolated in 65% yield by preparative chromatofocusing, are stable in 0.05 M phosphate buffer, pH 6.8, containing 1 mM beta-mercaptoethanol and exhibit similar kinetic constants when the catalytic activities of the isolated forms are compared with quinonoid dihydrobiopterin as substrate. All forms generate complexes with the enzymatic cofactor NADH which are also detectable by IEF. When examined further by IEF under denaturing conditions in 6 M urea the enzyme demonstrates a differing subunit composition for its three forms. Two distinct subunits, designated alpha and beta, can be identified, and additional evidence suggests that the native enzyme forms I, II, and III represent the three differing dimeric combinations alpha alpha (form I), alpha beta (form II), and beta beta (form III).  相似文献   

5.
Isoenzymes of human red cell glutamate-pyruvate transaminase (GPT) were resolved by isoelectric focusing (IEF) of hemolysates in polyacrylamide gels at pH 5.0-7.0. The bands of enzyme activity required both alpha-ketoglutarate and L-alanine in the staining mixture for visualization, indicating that the bands were not lactate dehydrogenase or glutamate dehydrogenase. Phenotyping of 41 individuals by IEF, including types GPT 1, 2A, 1-2A, 1-2B, and 2A-2B, agreed with the typing results obtained by electrophoresis in starch gels and in polyacrylamide gels at acid and alkaline pH. Analysis of one kindred demonstrated autosomal codominant transmission of the rare GPT*2B gene through 3 generations. IEF facilitates phenotyping by permitting identification of the GPT types on a single gel with a considerable reduction in time and cost. Although no new variants were found in this investigation, IEF may be more powerful for the recognition of presently undetected variants of GPT.  相似文献   

6.
7.
We describe and compare the use of isoelectric focusing (IEF) in a granulated Sephadex matrix and in polyacrylamide immobilized pH gradients to separate an aromatase inhibitor (follicle regulatory protein: FRP) in preparative amounts from porcine follicular fluid (PFF). The starting material for IEF was derived from pFF after passage through agarose immobilized textile dye Orange A (0.5 KC1 eluent). Before IEF, some Orange A bound (OAB) material was further purified on a FPLC employing a Mono-Q anion exchange column. Previous use of chromatofocusing indicated that aromatase inhibitory activity is largely concentrated in OAB fractions with a pI in the ranges of pH approximately 4.5 and approximately 6.5. The current study revises these findings to provide a more precise measure of the isoelectric points in question to pH 4.73 +/- 0.05 and pH 6.41 +/- 0.06. The use of Sephadex was limited by gradient instability and the selection of pH ranges available. IEF using immobilized pH gradients had several advantages over Sephadex: 1) broader selection of gradients from 0.1 to 7.0 pH units; greater resolving power, and enhanced stability. The principal disadvantage of the immobiline system was the recovery of focused material from the gel matrix. The use of isoelectric focusing with immobilized pH gradients on a preparative scale to purify FRP from OAB resulted in a greater than 50% recovery with a substantial increase in specific activity (from ID50 approximately 300 micrograms/ml to 20 ng/ml).  相似文献   

8.
Polyclonal rabbit antibodies to thyroxine, human myoglobin, human growth hormone, human thyrotropin, human alpha-fetoprotein, and human thyroglobulin were fractionated into clonotypic antibodies with different isoelectric points by agarose isoelectric focusing or chromatofocusing. The effect of pH on the binding of these antigens by their respective clonotypic antibodies was assessed by radioimmunoassay. The profiles of the pH effect differed both for different antigens and for different pI's of the antibodies used. The pH optima in the radioimmunoassays for protein antigens were found to be expressed as a function of pI and molecular weight of both antigen and antibody molecules.  相似文献   

9.
Biliverdin reductase was purified from pig spleen soluble fraction to a purity of more than 90% as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was a monomer protein with a molecular weight of about 34,000. Its isoelectric point was at 6.1-6.2. The enzyme was strictly specific to biliverdin and no other oxiodoreductase activities could be detected in the purified enzyme preparation. The purified enzyme could utilize both NADPH and NADH as electron donors for the reduction of biliverdin. However, there were considerable differences in the kinetic properties of the NADPH-dependent and the NADH-dependent biliverdin reductase activities: Km for NADPH was below 5 microM while that for NADH was 1.5-2 mM; the pH optimum of the reaction with NADPH was 8.5 whereas that of the reaction with NADH was 6.9; Km for biliverdin in the NADPH system was 0.3 microM whereas that in the NADH system was 1-2 microM. In addition, both the NADPH-dependent and NADH-dependent activities were inhibited by excess biliverdin, but this inhibition was far more pronounced in the NADPH system than in the NADH system. IX alpha-biliverdin was the most effective substrate among the four biliverdin isomers, and the dimethylester of IX alpha-biliverdin could not serve as a substrate. Biliverdin reductase was also purified about 300-fold from rat liver soluble fraction. The hepatic enzyme was also a monomer protein with a molecular weight of 34,000 and showed properties quite similar to those of the splenic enzyme as regards the biliverdin reductase reaction. The isoelectric point of the hepatic enzyme, however, was about 5.4. It was assumed that NADPH rather than NADH is the physiological electron donor in the intracellular reduction of IX alpha-biliverdin. The stimulatory effects of bovine and human serum albumins on the biliverdin reductase reactions were also examined.  相似文献   

10.
Chromatofocusing, which separates proteins based on differences in isoelectric point, has been used on the Fast Protein Liquid Chromatography (FPLC) system (Pharmacia) to separate the C apolipoproteins from human very low density lipoproteins (VLDL). Using a Mono P column (Pharmacia), a pH gradient between pH 6.2 and pH 4.0 was generated using buffers containing 6 M urea, at a flow rate of 0.5 ml/min. Typically, runs took approximately 45 min. Chromatofocusing of delipidated whole VLDL produced sharp, well-resolved peaks for the C apolipoproteins. However, as determined by analytical isoelectric focusing (IEF), the apolipoprotein E isoforms were not separated from apoC-II, and they contaminated the other apoC species to a variable extent. In addition, apoC-II was not resolved from apoC-III0. Preliminary precipitation of VLDL with acetone prior to delipidation removed both apolipoproteins E and B. Using a start buffer of 25 mM histidine, pH 6.2, and a 1:30 dilution of the polybuffer exchanger (eluting buffer), apoC-II, C-III0, C-III1, and C-III2 were well resolved in run-times of approximately 60 min. The C apoproteins proved to be pure by analytical IEF and immunoassay with monospecific antisera against apoC-II and C-III. Recovery was over 90% of the protein chromatographed. In addition, a variant of apoC-II present in VLDL of a hypertriglyceridemic subject was clearly resolved from the other C apolipoproteins. This technique is superior to conventional methodology in terms of its time saving and high resolution. The application of this technique to the study of C apolipoprotein variants and C apolipoprotein specific radioactivity determinations is possible.  相似文献   

11.
1. The Ca2+-dependent phosphatidylinositol phosphodiesterase (phospholipase C-type) from the cytosolic supernatant of rat brain was active against exogenous [32P]-phosphatidylinositol from pH5.0 to pH8.5. However, the activity in the range pH7.0–8.5 could not be recovered after precipitation with (NH4)2SO4; most of the enzyme activity was recovered in the 30–50% fraction and showed a single sharp pH optimum at 5.5. 2. The cytosolic supernatant was analysed by isoelectric focusing on acrylamide gels, and assay at pH5.5. Four peaks of phosphodiesterase activity were found at pI ranges 7.4–7.2, 6.0–5.8, 4.8–4.4 and 4.2–3.8. 3. The cytosolic supernatant was also applied to a chromatofocusing column, and again assayed at pH5.5. Four peaks were eluted: minor, but consistent, activity at the beginning of the elution with a pI of near 7.2 or above; a second peak at pH6.0–5.85; a third broad peak with a wide range pH5.3–4.2; and a fourth peak, which was eluted by washing the column with 1m-NaCl, suggesting an isoenzyme with a pI below 4.0 (supported by the result of the isoelectric focusing). 4. If all the chromatofocusing fractions were assayed at pH7.0 or 8.0 (at 1mm-Ca2+), only a single sharp peak was detected, with a pI of 4.6–4.8. This peak disappeared on (NH4)2SO4 fractionation (30–50%) of the cytosolic supernatant, whereas the four peaks with activity at pH5.5 were virtually unaffected. 5. The four activities (assayed at pH5.5) separated by chromatofocusing produced inositol 1:2-cyclic monophosphate, inositol 1-monophosphate and diacylglycerol as enzymic products. 6. We conclude that the Ca2+-dependent phosphatidylinositol phosphodiesterase exhibits considerable heterogeneity, both with respect to pH optima of activity, and its isoelectric properties.  相似文献   

12.
纯牛脾胆绿素还原酶是单一蛋白质,分子量约34 000,等电点约6.2。该酶对胆绿素具有专一性,在还原胆绿素为胆红素中,以还原胆绿素Ⅸ_α最快,Ⅸ_β、Ⅸ_γ和Ⅸ_δ皆很慢。于还原反应中,此酸可以NADH为电子和氢供体,NADPH亦然。然而,NADH依赖性酸与NADPH依赖性酶动力学性质不同:与NADH反应的最适pH7.0,而与HADPH反应时为8.5;两者活性均为过量的胆绿素所抑制,不过,NADPH依赖性酶更敏感。  相似文献   

13.
Isoelectric focusing techniques (IEF) were used to examine the tissue distribution and genetic variability of aldehyde dehydrogenases (AHDs) from inbred strains of mice. Twelve zones of AHD activity were resolved which were differentially distributed between tissues. Liver extracts exhibited highest activity for most enzymes, with the exception of isozymes found in stomach (AHD-4) and testis (AHD-4 and AHD-6). Genetic variants for AHD-1 (liver mitochondrial isozyme) and AHD-4 (stomach isozyme) were examined from inbred strains and F1 hybrid animals. The results were consistent with dimeric subunit structures (designated as A2 and D2 isozymes respectively). IEF patterns for activity variants of testis-specific AHD-6 were identical, with 3-banded phenotypes being observed. pI values for the AHD forms as well as for aldehyde oxidase and xanthine oxidase isozymes, which stain in the absence of coenzyme, were reported.  相似文献   

14.
Immunoglobulin G fractions prepared from conventional rabbit anti-thyroxine (T4) antisera were fractionated by agarose gel isoelectric focusing (IEF) in the range of pH 3 to 10, and by chromatofocusing using a Fast Protein Liquid Chromatography (FPLC) system. The clonotype antibodies were recovered from the fractions and subjected to Scatchard plot analysis. The highest affinity constants of the initial antibody (shown in parentheses) and those of the antibodies recovered were IEF, 1.8 X 10(9) to 8.3 X 10(9) M-1 (2.2 X 10(9) M-1); FPLC, 2.4 X 10(9) to 6.0 X 10(9) M-1 (2.5 X 10(9) M-1). A sensitive radioimmunoassay of T4 was achieved with the isolated high-affinity anti-T4 antibody. The minimum detectable concentration of T4 was 6.3 X 10(-15) to 1.5 X 10(-14) mol/tube, which was three to five times lower than detectable with the initial antibodies.  相似文献   

15.
Since the last report numerous new DBP (Gc) variants have been observed; at present a total of 84 different mutants can be distinguished. Several of them have similar electrophoretic mobilities and/or isoelectric points of conventional isoelectric focusing (IEF). IEF in polyacrylamide gels in the presence of 3 M urea is a convenient and efficient method for the detection of hidden variation.  相似文献   

16.
Differences among cystic fibrosis (CF) genotypes (CF, obligate carriers for CF [HZ], and controls) in mitochondrial calcium pool size, oxygen (O2) consumption, and rotenone inhibition of O2 consumption led to examination of mitochondrial NADH dehydrogenase (NADH: [acceptor] oxidoreductase, E.C. 1.6.99.3). pH optima of mitochondrial NADH dehydrogenase were different in enzyme derived from whole cell homogenates of cultured skin fibroblasts of subjects with CF, HZ, and controls. We describe here apparent binding of substrate to the enzyme (Km [NADH]) in cell fractions. Km (NADH) for CF ranged from 10.9 to 16.1 micro M (no. = 7); for HZ from 20.9 to 26.3 microM (no. = 5). With three exceptions, Km for controls (no. = 12) ranged from 31.8 to 42.8 microM. Km of the three exceptional controls were 21.5, 23.7, and 22.4 microM (the latter two are identical twins). pH optima of enzyme from these three strains were no different from that of known HZ. The correlation between two kinetic parameters of an enzyme and the three CF genotypes suggests an association between the CF gene and mitochondrial NADH dehydrogenase.  相似文献   

17.
18.
Starch gel electrophoresis and polyacrylamide gel isoelectric focusing (IEF) were used to investigate the genetic control of Triticeae shikimate dehydrogenase-1 (SKDH-1). Studies of wheat-alien species chromosome addition lines established thatSkdh-1 ofHordeum vulgare cv. Betzes is located in chromosome 5H,Skdh-V1 ofDasypyrum villosum in 5V,Skdh-R1 ofSecale cereale cvs. Dakold and King II in 5R, andSkdh-S 11 ofTriticum longissimum in 5S1S. Also, the chromosomal locations of the genes that encode SKDH-1 inT. aestivum cv. Chinese Spring,T. umbellulatum, andS. cereale cv. Imperial, determined earlier using zone electrophoresis, were reconfirmed using IEF. Zone electrophoresis and IEF do not differ markedly in their ability to detect the expression of alienSkdh-1 genes in wheat-alien species chromosome addition lines. However, IEF may be superior to zone electrophoresis as a technique for detecting and analyzing SKDH-1 genetic variants within Triticeae species; among the species studied, IEF generally resolved two or more isozymes perSkdh-1 allele present, while zone electrophoresis resolved only one.Technical article No. 22791 of the Texas Agricultural Experiment Station. This paper is based upon research supported in part by the U.S. Department of Agriculture under Agreement No. 83-CRCR-1-1322.  相似文献   

19.
Genetic polymorphism of human C4-binding protein   总被引:3,自引:0,他引:3  
Two different forms of human C4-bp, C4-bp A and C4-bp B, have been identified by isoelectric focusing (IEF) of neuraminidase-treated EDTA-plasma samples. Family studies demonstrate Mendelian segregation of these forms, indicating that they are under gentic control. This conclusion is supported by IEF analysis of the two variants purified by affinity chromatography. Under completely denaturing conditions, C4-bp B was found to be composed of two subunits that focused at different pH, whereas C4-bp A contains only the more basic one. These results suggest that a single autosomal locus with at least two codominant alleles coding for the subunits controls the IEF variation of C4-bp in humans. The allele designated C4BP*1 codes for a subunit that, after neuraminidase treatment, focuses at pH = 6.65. The allele C4BP*2 codes for a different subunit that focuses at pH = 6.60. The C4-bp A phenotype corresponds to the genotype C4BP*1,C4BP*1 and the phenotype C4-bp B to the genotype C4BP*1,C4BP*2. The phenotype corresponding to the C4BP*2,C4BP*2 homozygous genotype has not been encountered thus far. Initial linkage data indicate that the C4BP locus is not closely linked to either the HLA or to the C3 loci.  相似文献   

20.
Biliverdin reductase (BVR) reduces heme oxygenase (HO) activity product, biliverdin, to bilirubin. BVR is unique in having dual pH/dual cofactor requirements. Using Escherichia coli-expressed human BVR and COS cells, we show that BVR is autophosphorylated and that phosphorylation is required for its activity. An "in blot" autophosphorylation assay showed that BVR is a renaturable phosphoprotein. Controls for the experiments were HO-1 and HO-2; both are phosphoproteins but are not autophosphorylated. Autophosphorylation was pH-dependent, with activity at pH 8.7 being most prominent. In addition, 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate fluorescence titration of BVR gave a lower K(d) at pH 8.7 than at pH 7.4 (15.5 versus 28.0 micrometer). Mn(2+) was required for binding of the ATP analogue and for autophosphorylation; the autokinase activity was lost when treated at 60 degrees C for 10 min. The loss of transferred phosphates by alkaline treatment suggested that BVR is a serine/threonine kinase. Potato acid phosphatase treatment reversibly inactivated the enzyme. The enzyme was also inactivated by treatment with the serine/threonine phosphatase, protein phosphatase 2A; okadaic acid attenuated the inhibition. Titration of protein phosphatase 2A-released phosphates indicated a 1:6 molar ratio of BVR to phosphate. The BVR immunoprecipitated from COS cell lysates was a phosphoprotein, and its activity and phosphorylation levels increased in response to H(2)O(2). The results define a previously unknown mechanism for regulation of BVR activity and are discussed in the context of their relevance to heme metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号