首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent data on the molecular mechanisms of stress responses of bacteria are reviewed, with emphasis on their reactions to a variety of stressors (heat, oxidation, cold, osmotic shock, etc.). Mechanisms underlying the phenomenon of sensoring are discussed. It is shown that cross-resistance to stressors and cell-to-cell communication of bacteria, mediated by chemical metabolites, affect their survival in food products. Stress-antiagonizing activity of bacteria is discussed in relation to food product biotechnology.  相似文献   

2.
The important ecological role of predation risk in shaping populations, communities and ecosystems is becoming increasingly clear. In this context, synergistic effects between predation risk and other natural stressors on prey organisms are gaining attention. Although non-pathogenic bacteria can be widespread in aquatic ecosystems, their role in mediating effects of predation risk has been ignored. We here address the hypothesis that non-pathogenic bacteria may reinforce the negative effects of predation risk in larvae of the damselfly Coenagrion puella. We found synergistic effects for all three life history variables studied: mortality increased, growth reductions were magnified and bacterial load was higher when both non-lethal stressors were combined. The combined exposure to the bacterium and predation risk considerably impaired the two key antipredator mechanisms of the damselfly larvae: they no longer reduced their food intake under predation risk and showed a synergistic reduction in escape swimming speed. The reinforcing negative effects on the fitness-related traits could be explained by the observed synergistic effects on food intake, swimming muscle mass, immune function and oxidative damage. These are likely widespread consequences of energetic constraints and increased metabolic rates associated with the fight-or-flight response. We therefore hypothesize that the here documented synergistic interactions with non-pathogenic bacteria may be widespread. Our results highlight the ignored ecological role of non-pathogenic bacteria in reinforcing the negative effects of predation risk on prey organisms.  相似文献   

3.
Elms (Ulmus spp.) have long been appreciated for their environmental tolerance, landscape and ornamental value, and the quality of their wood. Although elm trees are extremely hardy against abiotic stresses such as wind and pollution, they are susceptible to attacks of biotic stressors. Over 100 phytopathogens and invertebrate pests are associated with elms: fungi, bacteria and insects like beetles and moths, and to a lesser extent aphids, mites, viruses and nematodes. While the biology of the pathogen and insect vector of the Dutch elm disease has been intensively studied, less attention has been paid so far to the defence mechanisms of elms to other biotic stressors. This review highlights knowledge of direct and indirect elm defences against biotic stressors focusing on morphological, chemical and gene regulation aspects. First, we report how morphological defence mechanisms via barrier formation and vessel occlusion prevent colonisation and spread of wood- and bark-inhabiting fungi and bacteria. Second, we outline how secondary metabolites such as terpenoids (volatile terpenoids, mansonones and triterpenoids) and phenolics (lignans, coumarins, flavonoids) in leaves and bark are involved in constitutive and induced chemical defence mechanisms of elms. Third, we address knowledge on how the molecular regulation of elm defence is orchestrated through the interaction of a huge variety of stress- and defence-related genes. We conclude by pointing to the gaps of knowledge on the chemical and molecular mechanisms of elm defence against pest insects and diseases. An in-depth understanding of defence mechanisms of elms will support the development of sustainable integrated management of pests and diseases attacking elms.  相似文献   

4.
1. When populations of herbivorous insects increase in density, they can alter the quantity or quality of their food. The impacts of diet‐related stressors on insect fitness have been investigated singly, but not simultaneously. 2. Foliage quantity and quality of red alder, Alnus rubra, were manipulated together with the presence of non‐entomopathogenic phylloplane bacteria to investigate their impacts, singly and in combination, on survival, pupal mass, growth rate, fecundity and egg quality of a cyclic forest insect, the western tent caterpillar, Malacosoma californicum pluviale. 3. Food limitation (half food) had strong negative impacts on all life‐history traits. When the larvae were fed continuously, however, neither ingesting phylloplane bacteria nor eating leaves from damaged branches (induced foliage) affected survival. In the half‐food treatment, ingesting bacteria further increased mortality, while feeding on induced foliage improved survival. 4. Growth rate and pupal mass of both sexes were reduced for larvae with food limitation compared with continuously fed insects and this was exacerbated when the larvae also ate bacteria‐treated leaves. A combination of bacteria and induced foliage also reduced larval growth rate by 5% in the full‐food treatment. 5. Fecundity (eggs per egg mass) was 2.7 times greater in full‐food than in food‐limited treatments but neither phylloplane bacteria nor plant induction had an effect. Insects fed induced foliage produced smaller eggs. Overall, there was no evidence of a three‐way interaction between the three stressors, although there were negative synergistic effects, primarily between food limitation and the ingestion of phylloplane bacteria.  相似文献   

5.
Current viewpoints concerning the bactericidal mechanisms of neutrophils are reviewed from a perspective that emphasizes challenges presented by the inability to duplicate ex vivo the intracellular milieu. Among the challenges considered are the influences of confinement upon substrate availability and reaction dynamics, direct and indirect synergistic interactions between individual toxins, and bacterial responses to stressors. Approaches to gauging relative contributions of various oxidative and nonoxidative toxins within neutrophils using bacteria and bacterial mimics as intrinsic probes are also discussed.  相似文献   

6.
Listeria monocytogenes is an intracellular human pathogen which enters the body through contaminated food stuffs and is known to contaminate fresh leafy produce such as spinach, lettuce and rocket. Routinely, fresh leafy produce is grown and processed on a large scale before reaching the consumer through various products such as sandwiches and prepared salads. From farm to fork, the fresh leafy produce supply chain (FLPSC) is complex and contains a diverse range of environments where L. monocytogenes is sporadically detected during routine sampling of produce and processing areas. This review describes sources of the bacteria in the FLPSC and outlines the physiological and molecular mechanisms behind its survival in the different environments associated with growing and processing fresh produce. Finally, current methods of source tracking the bacteria in the context of the food supply chain are discussed with emphasis on how these methods can provide additional, valuable information on the risk that L. monocytogenes isolates pose to the consumer.  相似文献   

7.
Glutaminase is widely distributed in microorganisms including bacteria, yeast and fungi. The enzyme mainly catalyzes the hydrolysis of γ-amido bond of -glutamine. In addition, some enzymes also catalyze γ-glutamyl transfer reaction. A highly savory amino acid, -glutamic acid and a taste-enhancing amino acid of infused green tea, theanine can be synthesized by employing hydrolytic or transfer reaction catalyzed by glutaminase. Therefore, glutaminase is one of the most important flavor-enhancing enzymes in food industries. In this review, subsequent to a discussion on the definition of glutaminase, the enzymatic properties, applications of glutaminase in the food industry, and occurrence and distribution of the enzyme are described. We then illustrate the gene cloning, primary structure, and 3D-structure of glutaminase. Finally, to facilitate the future applications of glutaminase in food fermentations, the mechanisms of action of salt-tolerant glutaminase are briefly discussed.  相似文献   

8.
Mechanisms of nisin resistance in Gram-positive bacteria   总被引:1,自引:0,他引:1  
Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain Gram-positive bacteria. However, the effectiveness of nisin is often affected by environmental factors such as pH, temperature, food composition, structure, as well as food microbiota. The development of nisin resistance has been seen among various Gram-positive bacteria. The mechanisms under the acquisition of nisin resistance are complicated and may differ among strains. This paper presents a brief review of possible mechanisms of the development of resistance to nisin among Gram-positive bacteria.  相似文献   

9.
Restricting the food intake of rats and mice to 60% of ad libitum intake has been shown to significantly slow their aging processes and markedly extend length of life. Evidence is presented that indicates the antiaging action of this dietary restriction is a manifestation of hormesis and acts by enabling the animal to cope with stressors, including the low‐intensity, long‐term intrinsic and extrinsic stressors conjectured to cause aging. A hypothesis is offered for the evolutionarily adaptive basis of the antiaging action of dietary restriction: It proposes that this antiaging action is a byproduct of the evolution of mechanisms that enabled animals living in the wild to survive unpredictable and relatively brief periods of food scarcity. Likely proximate mechanisms of antiaging action of dietary restriction are considered. Enhancement of the stress response genes, particularly the heat shock protein genes, appears to be importantly involved. Evidence indicates that moderate hyperadrenocorticism also plays a significant role. These proximate mechanisms may well be major players in other examples of hormesis.  相似文献   

10.
ABSTRACT. Important progress has been made in recent years towards better understanding of the establishment and maintenance of endosymbiosis in protozoa and of the eventual integrative mechanisms involved. Still, many problems remain to be investigated more thoroughly. In this paper, while treating and reviewing the subject broadly, particular and more detailed attention is given to three selected systems: endonuclear symbiosis by Holospora bacteria in Paramecium; algal (Chlorella) relationships with the “green”Paramecium (P. bursaria) as host; and the rod-shaped bacteria found in the cytoplasm of Amoeba proteus. Data concerning the physiology of food vacuoles, membrane transport, photobehavior, recognition specificity, enzyme activity, and the like are presented and reviewed and discussed in light of the growing literature on the overall subject of “endocytobiology.” Emphasized is the complicated network of interactions between symbiotic partners and the importance of the development of integrative mechanisms in the evolution of the many intimate associations known at the cellular level today.  相似文献   

11.
Mindlin SZ  Petrova MA  Bass IA  Gorlenko ZhM 《Genetika》2006,42(11):1495-1511
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic producers, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

12.
Stengel A  Wang L  Taché Y 《Peptides》2011,32(11):2208-2217
Ghrelin is the only known peripherally produced and centrally acting peptide hormone that stimulates food intake and digestive functions. Ghrelin circulates as acylated and desacylated forms and recently the acylating enzyme, ghrelin-O-acyltransferase (GOAT) and the de-acylating enzyme, thioesterase 1/lysophospholipase 1 have been identified adding new layers of complexity to the regulation of ghrelin. Stress is known to alter gastrointestinal motility and food intake and was recently shown to modify circulating ghrelin and GOAT levels with differential responses related to the type of stressors including a reduction induced by physical stressors (abdominal surgery and immunological/endotoxin injection, exercise) and elevation by metabolic (cold exposure, acute fasting and caloric restriction) and psychological stressors. However, the pathways underlying the alterations of ghrelin under these various stress conditions are still largely to be defined and may relate to stress-associated autonomic changes. There is evidence that alterations of circulating ghrelin may contribute to the neuroendocrine and behavioral responses along with sustaining the energetic requirement needed upon repeated exposure to stressors. A better understanding of these mechanisms will allow targeting components of ghrelin signaling that may improve food intake and gastric motility alterations induced by stress.  相似文献   

13.
Recent efforts of researchers to elucidate the molecular mechanisms of biological systems have been revolutionized greatly with the use of high throughput and cost-effective techniques such as next generation sequencing (NGS). Application of NGS to microbial genomics is not just limited to predict the prevalence of microorganisms in food samples but also to elucidate the molecular basis of how microorganisms respond to different food-associated conditions, which in turn offers tremendous opportunities to predict and control the growth and survival of desirable or undesirable microorganisms in food. Concurrently, NGS has facilitated the development of new genome-assisted approaches for correlating genotype and phenotype. The aim of this review is to provide a snapshot of the various possibilities that these new technologies are opening up in area of food microbiology, focusing the discussion mainly on lactic acid bacteria and yeasts associated with fermented food. The contribution of NGS to a system level understanding of food microorganisms is also discussed.  相似文献   

14.
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic-producing strains, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

15.
There is a considerable interest in the cold adaptation of food-related bacteria, including starter cultures for industrial food fermentations, food spoilage bacteria and food-borne pathogens. Mechanisms that permit low-temperature growth involve cellular modifications for maintaining membrane fluidity, the uptake or synthesis of compatible solutes, the maintenance of the structural integrity of macromolecules and macromolecule assemblies, such as ribosomes and other components that affect gene expression. A specific cold response that is shared by nearly all food-related bacteria is the induction of the synthesis so-called cold-shock proteins (CSPs), which are small (7 kDa) proteins that are involved in mRNA folding, protein synthesis and/or freeze protection. In addition, CSPs are able to bind RNA and it is believed that these proteins act as RNA chaperones, thereby reducing the increased secondary folding of RNA at low temperatures. In this review established and novel aspects concerning the structure, function and control of these CSPs are discussed. A model for bacterial cold adaptation, with a central role for ribosomal functioning, and possible mechanisms for low-temperature sensing are discussed.  相似文献   

16.
The use of scanning electron microscopy (SEM) allowed a studyof the distribution of bacteria in the various digestive organsof the snail Helix aspersa Müller. The bacteria are enclosedby mucous secretions (mucous film or mucous grains) and sometimesattached on the cilia of some of the digestive walls. Accordingto the food that was given to the snails, different morphologicaltypes appeared, two of which dominated. Adult snails were fasted for 4 days, given a dehydrated artificialfood and then sacrificed at different times during digestion.The presence of bacteria may be related to the time of digestion.In fact, bacteria seem to accompany the food mass; they developmostly in the stomach and in the intestine where they may helpdigest the food. Fasting or hibernating snails do not possess bacteria in thealimentary lumen or on the digestive walls. However, the residualfaeces localized in the distal, intestinal lumen, lodge greatquantities of bacteria. From these results, the endogenous or/and exogenous existenceof the bacterial flora in alimentary system of Helix aspersais discussed. (Received 26 June 1989; accepted 16 October 1989)  相似文献   

17.
The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km2 of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.  相似文献   

18.
Lactic acid bacteria (LAB) is mainly used in food fermentation. In addition, LAB fermentation technology has been studied in the development of industrial food additives, nutrients, or enzymes used in food processing. In the field of red biotechnology, LAB is approved and is generally recognized as a safe organism and is considered safe for biotherapeutic treatments. Recent clinical trials have demonstrated the medicinal value of therapeutic recombinant LAB and the suitability of innate mechanisms of secretion and anchoring for therapeutic applications such as antibody or vaccine production. However, the gram‐positive phenotypic trait of LAB creates challenges for genetic modifications when compared to other conventional workhorse bacteria, resulting in exclusive developments of genetic tools for engineering LAB. In this review, several distinct approaches in gene expression for engineering LAB are discussed.  相似文献   

19.
It has been hypothesised that larger habitats should support more complex food webs. We consider three mechanisms which could lead to this pattern. These are increased immigration rates, increased total productivity and spatial effects on the persistence of unstable interactions. Experiments designed to discriminate between these mechanisms were carried out in laboratory aquatic microcosm communities of protista and bacteria, by independently manipulating habitat size, total productivity and immigration rate. Larger habitats supported more complex food webs, with more species, more links per species and longer maximum and mean food chains, even in the absence of differences in total energy input. Increased immigration rate resulted in more complex food webs, but habitats with higher energy input per unit area supported less complex food webs. We conclude that spatial effects on the persistence of unstable interactions, and variation in immigration rates, are plausible mechanisms by which habitat size could affect food web structure. Variation in total productivity with habitat area seems a less likely explanation for variation in food web structure.  相似文献   

20.
Research data on common stressor proteins of bacteria obtained during recent 10 years are updated and analyzed. Bacteria of one and the same species were shown to give similar response to the action of different stressors; the main stressor proteins of different bacteria appeared to be homologous; bacteria have cross protection from different stressors. In addition, some common stressor proteins of bacteria were found to be homologous with human antigens that is of great importance for immunobiotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号