首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental changes in the amount and conformation of DNA in chicken lens were studied. For this, DNA in situ in lens fiber cell nuclei of chickens was examined by microfluorometry with Hoechst 33258 (Hoe) fluorochrome. On 1 M NaCl-aided Hoe staining, by which the amount of DNA can be determined accurately, the fluorescence intensity of lens fiber cells was found to decrease with no change in that of the lens epithelial cells during development. On the contrary, on normal NaCl-free Hoe staining the fluorescence intensity of the lens cells was found to increase gradually during development. These results suggest that during development the amount of DNA in lens fiber cells decreases in association with some change in its conformation.  相似文献   

2.
Summary Developmental changes in the amount and conformation of DNA in chicken lens were studied. For this, DNA in situ in lens fiber cell nuclei of chickens was examined by microfluorometry with Hoechst 33258 (Hoe) fluorochrome. On 1 M NaCl-aided Hoe staining, by which the amount of DNA can be determined accurately, the fluorescence intensity of lens fiber cells was found to decrease with no change in that of the lens epithelial cells during development. On the contrary, on normal NaCl-free Hoe staining the fluorescence intensity of the lens cells was found to increase gradually during development. These results suggest that during development the amount of DNA in lens fiber cells decreases in association with some change in its conformation.  相似文献   

3.
4.
The level of galactosyltransferase activity was followed during conversion of iris epithelial cells into lens cells in lentectomized adult newts. A moderate increase during the dedifferentiation phase is followed by a remarkable increase when the lens tissue is differentiating. Maturation of the lens is associated with a decline in the enzyme activity.  相似文献   

5.
6.
To try to understand the mechanism of the dedifferentiation process which occurs during metaplastic transformation of iris epithelial cells into lens cells in newt lens regeneration, the activity of N -acetylglucosaminidase in iris and iris epithelium was studied as a function of time after lentectomy. The activity was found to increase during the dedifferentiation phase of the iris epithelium. The dorsal iris, where definite dedifferentiation occurs side by side with incomplete dedifferentiation, shows significantly greater enhancement of the activity than the ventral iris, where only incomplete dedifferentiation takes place. When the cells complete dedifferentiation and engage in redifferentiation into lens cells, the level of activity drops, approaching that of the normal lens. Evidence is also presented for release of the enzyme into the ocular fluid during dedifferentiation. The possibility that the enzyme is involved in surface alterations of iris epithelial ceils engaged in dedifferentiation is discussed.  相似文献   

7.
Apoptosis in lens development and pathology   总被引:2,自引:0,他引:2  
The ocular lens is a distinct system to study cell death for the following reasons. First, during animal development, the ocular lens is crafted into its unique shape. The crafting processes include cell proliferation, cell migration, and apoptosis. Moreover, the lens epithelial cells differentiate into lens fiber cells through a process, which utilizes the same regulators as those in apoptosis at multiple signaling steps. In addition, introduction of exogenous wild-type or mutant genes or knock-out of the endogenous genes leads to apoptosis of the lens epithelial cells followed by absence of the ocular lens or formation of abnormal lens. Finally, both in vitro and in vivo studies have shown that treatment of adult lens with stress factors induces apoptosis of lens epithelial cells, which is followed by cataractogenesis. The present review summarizes the current knowledge on apoptosis in the ocular lens with emphasis on its role in lens development and pathology.  相似文献   

8.
During terminal differentiation of lens epithelial cells into fiber cells, nuclei become pycnotic and DNA degradation occurs. We investigated the putative role in this process of an endogenous DNAase. After incubation of isolated nuclei of both cell types at 37 degrees C, DNAase activity was revealed by DNA size analysis on 0.3-1% neutral and alkaline agarose, one- and two-dimensional gels. This DNAase activity is more prominent in lens fiber nuclei than in epithelial nuclei at all the embryonic stages probably because of a preexisting higher concentration of divalent cations in the former. This activity is calcium or magnesium dependent in both types of nuclei.  相似文献   

9.
Epithelial cells from the lens equator differentiate into elongated fiber cells. In the final steps of differentiation, the chromatin appears quite condensed and chromatin breakdown into nucleosmes occurs. DNA breaks due to an endodeoxyribonuclease activity corresponding to at least two polypeptides of 30 and 40 kDa have been identified. To identify the nature and the developmental appearance of initial breaks, nick translation reaction was followed both biochemically and in situ in fiber and epithelial cells from chick embryonic lenses. There is no accumulation of single-strand breaks (SSB) with 3'OH ends in lens fiber cells during embryonic development. Such damage can be increased in these cells by treatment with DNAase I indicating the absence of an inhibitor of the nick translation reaction in fiber cells. However, there are indications of the presence of DNA breaks with blocked termini when the phosphatase activity of nuclease P1 is used. The presence of breaks is also indicated by the large amounts of (ADP-ribose)n found in lens fibers particularly at 11 days of embryonic development (E11) as ADP-ribosyl transferase binds to and is activated by DNA strand breaks. Incubation of lens cells in vitro, which causes nucleosomal fragmentation only in fiber cells, produces SSB with 3'OH ends in both epithelia and fibers. Incubation for short periods, observed in experiments in situ, induces SSB first in the central fiber nuclei, which are late in differentiation. This may indicate that these SSB play a physiological role. Long incubations produce larger numbers of SSB in epithelia than fibers. The SSB in the fibers may have been converted into double-strand breaks (D SB), seen as nucleosomal fragments, and therefore no longer act as substrates for nick translation. The nuclease activity responsible for SSB production is independent of divalent cations and could be implicated in lens terminal differentiation. © 1994 Wiley-Liss, Inc.  相似文献   

10.
cAMP-independent protein kinase activity of casein type was found in Rana temporaria eye lens. The highest activity was observed in "cortex" lens fibres, and decreased two-fold in lens epithelium. Minimum activity was found in lens "nucleus" fibres. Thus, protein kinase activity is characteristic of metabolically active differentiating lens cells. Enzyme fraction showed almost complete binding to the immobilized RNA. The enzyme was inhibited by heparine, phosphorylated casein (but not histones). It could use either ATP or GTP as a source of phosphate, and caused modification of serine and threonine residues in casein molecule. The protein kinase from lens epithelium and cortex was purified 6,000-7,000-fold and was identified as a type II casein kinase.  相似文献   

11.
Fibre cells in the ocular lens exhibit a constitutive apoptotic process of nuclear degradation that includes chromatin breakage, generating a ladder pattern of DNA fragments. This process is intrinsic to the normal terminal differentiation program. Despite the loss of nucleus and cytoplasmic organelles, the terminal differentiated fibre cells remain in the lens during the whole life span of the individual. The lens cells thus provide a unique system in which to determine the presence and fate of endonucleases once the chromatin has been cleaved. We report here on the presence of DNase activity in nucleated and anucleated lens cells. Using a nuclease gel assay and double-stranded DNA as substrate, we found active 30 and 60 kDa DNases. The enzymatic activities were Ca(2+), Mg(2+) dependent, and active at neutral pH. The relative amount of these forms changed during development and aging of the lens fibre cells. Both forms were inhibited by Zn(2+), aurintricarboxylic acid, and G-actin. The proteins were also separated by SDS-PAGE, renatured after removing SDS and incubated in the presence of native DNA adsorbed to a membrane. Therefore it was possible to demonstrate, by means of a nick translation reaction, that the enzymes produced single strand cuts. Based on these findings we propose that these chick lens nucleases are probably related to DNase I.  相似文献   

12.
MP70 (a 70 kDa membrane protein) is a component of the gap junctions of the young fibre cells in the lens outer cortex. In the older fibres deeper in the mammalian lens (lens nucleus), MP70 is processed to MP38 by cleavage and removal of the carboxy terminal half. It is shown here that cortical MP70, and its derivative MP64, can be phosphorylated with cAMP-dependent protein kinase. In contrast, MP38 from the lens nucleus is not phosphorylated by the enzyme. Proteolytic processing and this lens region specific phosphorylation are relevant for the future development of functional assays for lens gap junctions.  相似文献   

13.
Experiments were performed in our laboratory to study the effects of a mammalian 8 kD vitreous humor (VH) factor on the DNA synthesis and mitosis of the epithelial cells of organ cultured rabbit lens. The 8 kD polypeptide factor was purified from mature rabbit vitreous humor by liquid chromatography. Proliferative activities of the epithelial cells of organ cultured lenses were stimulated by 3% rabbit serum. The data from our experiments depicted that the 8 kD VH factor effectively inhibits DNA synthesis and mitosis by the epithelial cells of the organ cultured lens. Our experiments also showed that this 8 kD VH factor can maintain its growth inhibitory activity even when heated for 3 min at 95 degrees C. The growth inhibitory effect of the 8 kD VH factor was dose dependent. Using iodinated vitreal proteins it was demonstrated that the VH proteins are able to enter or bind to lens epithelial cells. The growth inhibitory effect of the 8 kD VH factor was also tested on tissue cultured lens epithelial cells. These experiments showed that the 8 kD VH factor has no growth inhibitory effect on the tissue cultured lens epithelial cells. This experiment has been repeated many times using different concentrations of the factor. These observations suggest that the 8 kD VH factor may have receptors in the lens capsular material (extracellular matrix) and the factor-receptor binding is essential for the growth inhibitory effect.  相似文献   

14.
Poly(ADP-ribose) polymerase, an enzyme that has reportedly been confined to the nucleus of eukaryotic cells, has been found in the cytoplasm of HeLa cells. The enzyme activity is stimulated more than 30-fold by the addition of both DNA and histones. These two macromolecules are absolutely necessary for maximal activity and they act in a synergistic manner. The product of the reaction was characterized as poly(ADP-ribose) by its acid insolubility, its insensitivity to hydrolysis by DNase, RNase, spleen phosphodiesterase or Pronase and by release of 5′-AMP and 2′-(5″-phosphoribosyl)-5′-AMP by incubation with snake venom phosphodiesterase. A covalent attachment between histone F1 and poly(ADP-ribose) has been established by using the cytoplasmic enzyme. The enzyme is primarily associated with ribosomes, both free ribosomes and those found in polysomes. Inhibition of protein synthesis in the intact cell reduced the level of activity in the cytoplasm. The enzyme can be removed from the ribosomes by centrifugation through sucrose gradients containing 0.6 m ammonium chloride. A relationship between this enzyme and DNA replication is suggested by the fact that the specific activity in the cytoplasm parallels the rate of DNA synthesis during the HeLa cell cycle.  相似文献   

15.
Prox1, the vertebrate cognate of Drosophila Prospero, is a homeodomain protein essential for the development of the lens, liver and lymphatic system. While it is well established that the subcellular distribution of Prospero changes during development, this had not been demonstrated for Prox1. Here, high-resolution confocal microscopy demonstrated that Prox1 protein is predominately cytoplasmic in the lens placode as well as the lens epithelium and germinative zone throughout development. However during fiber cell differentiation, Prox1 protein redistributes to cell nuclei. Finally, as lens fiber cells condense their chromatin in response to lens denucleation, Prox1 remains in the nucleus but does not appear to interact with DNA. Thus, it appears that the function of Prox1, like that of its Drosophila cognate Prospero, is at least partially controlled by changes in its subcellular distribution during development.  相似文献   

16.
17.
DNA helicase IV from HeLa cells.   总被引:5,自引:5,他引:0       下载免费PDF全文
Human DNA helicase IV, a novel enzyme, was purified to homogeneity from HeLa cells and characterized. The activity was measured by assaying the unwinding of 32P labeled 17-mer annealed to M13 ss DNA. From 440g of HeLa cells we obtained 0.31 mg of pure protein. Helicase IV was free of DNA topoisomerases, DNA ligase and nuclease activities. The apparent molecular weight is 100 kDa. It requires a divalent cation for activity (Mg2+ = Mn2+ = Zn2+) and the hydrolysis of only ATP or dATP. The activity is destroyed by trypsin and is inhibited by 200 mM KCl or NaCl, 100 mM potassium phosphate, 45 mM ammonium sulfate, 5 mM EDTA, 20 microM ss M13 DNA or 20 microM poly [G] (as phosphate). The enzyme unwinds DNA by moving in the 5' to 3' direction along the bound strand, a polarity opposite to that of the previously described human DNA helicase I (Tuteja et al Nucleic Acids Res. 18, 6785-6792, 1990). It requires more than 84 bases of single-stranded DNA in order to exert its unwinding activity and does not require a replication fork-like structure. Like human DNA helicase I the enzyme can also unwind RNA-DNA hybrid.  相似文献   

18.
The DNA topoisomerase found in rat brain neurons relaxes supercoiled DNA in the absence of ATP or Mg2+. The estimated content of the active enzyme per nucleus of nerve cell is constant during development from a fetal proliferating neuroblast at the embryonic stage of 18 days to the terminally differentiated neuron (postnatal age of 60 days). The salt stability of DNA topoisomerase association with chromatin varies with the stage of development of nerve cells: at 300 mM NaCl most of the enzyme activity (greater than 90% of the removed activity) elutes from differentiated neuron chromatin, whereas only approx. 25% of the enzyme activity elutes from neuroblast chromatin.  相似文献   

19.
In the lens, epithelial cells from the equatorial zone differentiate into postmitotic elongated fibers. One aspect of this differentiation is nuclear shape transformation and DNA degradation. This process is controlled by DNase activity which in fiber nuclei increases with development. DNase activity is also present in the epithelial cell nuclei which appears to be non-functional but could be activated in vitro by exogenous addition of Ca2+. We have analyzed the possible selective action of endogenous DNase on 3 genes involved in lens terminal differentiation, namely delta-crystallin, beta-tubulin and vimentin, and on 1 gene not thought to participate in this process, ovalbumin. We have compared restriction DNA patterns of these genes in nuclei isolated from 11-day-old chick embryos and incubated in Ca2+-free medium or in fresh epithelial and fiber lens tissue at 11 and 18 days of development. During incubation in vitro of 11-day fiber nuclei, there is a net increase in the sensitivity of the delta-crystallin, beta-tubulin, ovalbumin and vimentin chromatin to the endogenous DNase. The vimentin gene appears to be more stable than the beta-tubulin and delta-crystallin genes indicating a degree of specificity of the endogenous DNase activity. In the epithelial nuclei, the lens-specific genes appear to be more stable but paradoxically there is a net degradation of the ovalbumin gene. In freshly isolated tissues the 4 genes were detected in epithelial and fiber cells at 11 and 18 days. Furthermore, in the mature fibers in which the nuclei were degenerating, the latter genes were still not completely digested.  相似文献   

20.
《Mutation research》1987,181(1):111-126
Uracil is not a normal constituent of DNA. Under natural conditions, it may appear either by deamination of cytosine residues or by incorporation of deoxyuridine monophosphate (dUMP). Visible light irradiation of BrdUrd-treated cells efficiently leads, under experimental situations, to the formation of dUMP residues in DNA. Plant cells, like other living organisms, can eliminate this potentially harmful base from DNA by an excision repair pathway, uracil-DNA glycosylase being the first enzyme acting during the incision process. Purified plant uracil-DNA glycosylase is a low molecular weight enzyme (27–29.5 kD) that specifically releases uracil present in DNA by splitting off the sugar-base bond. This enzyme is non-competitively inhibited by uracil and 6-aminouracil, but not by thymine, both in vitro and in vivo. However, other structurally related compounds do not show any inhibitory effect. This characteristic poses a number of unaswered questions regarding its mechanism of action. At the chromosome level, dUMP residues appear to be sister-chromatid exchange (SCE)-initiating events. This has been demonstrated for dUMP residue introduced either by visible light exposure of BrdUrd-treated cells or by dUMP mis-incorporation instead of dTMP in cells treated with inhibitors of thymidylate synthetase. The excision repair of uracil in plants appears to be finely regulated in different cell types depending on their proliferation rate and their development stage. Thus, high levels of uracil-DNA glycosylase do not seem to be necessarily associated with DNA replication, since non-proliferating cells, natural constituents of dormant meristems, contain enzyme levels comparable to those found in proliferating tissues, where it is modulated: the higher the cell cycle rate (and the DNA replication rate) the higher the uracil-DNA glycosylase activity. Finally, this excision repair enzyme seems to be turned off as cells enter their differentiated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号