首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In severe obesity, microvascular endothelial regulation of nitric oxide (NO) formation is compromised in response to muscarinic stimulation, and major arteries have suppressed flow-mediated dilation. Because normal microvessels are highly dependent on flow-mediated stimulation of NO generation and are responsive to intra- and extravascular oxygen availability, they are likely a major site of impaired endothelial regulation. This study evaluated the blood flow and oxygen-dependent aspects of intestinal microvascular regulation and NO production in Zucker obese rats just before the onset of hyperglycemia. Ruboxistaurin (LY-333531) was used to inhibit PKC-betaII to determine whether flow or oxygen-related NO regulation was improved. Blood flow velocity was increased by forcing arterioles to perfuse approximately 50% larger tissue areas by occlusion of nearby arterioles, and oxygen tension in the bath was lowered to create a modest oxygen depletion. When compared with lean Zucker rats, the periarteriolar NO concentration ([NO]) for obese rats was approximately 30% below normal. At elevated shear rates, the [NO] for arterioles of obese animals was 20-30% below those in the arterioles of lean rats, and the NO response to decreased oxygen was about half normal in obese rats. All of these regulatory problems were essentially corrected in obese rats by PKC blockade with only minor changes in the microvascular behavior in lean rats. Therefore, activation of PKC-betaII in endothelial cells during obesity suppressed NO regulation both at rest and in response to increased flow velocity and decreased oxygen availability.  相似文献   

2.
To determine whether microvessels in resting or contracting skeletal muscle constrict during baroreceptor activation, vascular diameters were measured in the spinotrapezius muscle of adult rats (n = 12) during occlusion of the common carotid arteries. Neural and myogenic components were distinguished using two types of occlusion: 1) "normal" (arterial pressure was allowed to increase with baroreceptor activation) and 2) "isobaric" (arterial pressure was maintained constant by decreasing blood volume). During normal occlusions, intermediate and small arteriolar diameters decreased in resting and contracting muscle (10-15% and 25-30%, respectively). Large arterioles and all-sized venules distended slightly (approximately 5%) in resting muscle, but diameters were maintained or decreased in contracting muscle. When arterial pressure was maintained constant (isobaric), the microvascular responses to baroreceptor activation in both resting and contracting muscle were essentially eliminated. We conclude that nearly all the arteriolar constriction observed in the spinotrapezius muscle during normal carotid artery occlusion is myogenic in origin, secondary to increased arterial pressure. This pressure-dependent constriction is augmented during skeletal muscle contraction and functional vasodilation.  相似文献   

3.
Forebrain ischemia was induced in Mongolian gerbils by bilateral occlusion of the common carotid arteries for 30 minutes. These animals do not have a complete circulus arteriosus Willisii. Mitochondria were prepared from the forebrain tissue at the end of the 30 minutes occlusion period as well as at different time points after the release of the occlusion. Tissue blood flow in the forebrain was also determined by measuring the brain tissue accumulation of 14C-iodoantipyrine. Tissue blood flow in the forebrain decreased from a control level of 1.43 +/- 0.03 ml/min/gr to 0.13 +/- 0.03 ml/min/gr by the 30th minute of ischemia, increased to 1.12 +/- 0.25 ml/min/gr after 5 minutes of reflow, but decreased again to 0.41 +/- 0.07 ml/min/gr after 1 1/2 hours of reflow. Oxygen consumption rate of mitochondria prepared from the forebrain (glutamate + malate as substrates in the presence of ADP) was 98 +/- 13 nmoles O2/min/mg protein in control animals, decreased to 61 +/- 9 nmoles O2/min/mg protein after 30 minutes of occlusion, recovered to 106 +/- 9 nmoles O2/min/mg protein during the first 30 minutes of reperfusion. During extended reperfusion, mitochondrial respiratory activity declined reaching 20 +/- 5 nmoles O2/min/mg protein after 5 1/2 hours of reperfusion. Respiratory control ratio of the mitochondria (relative increase of respiration upon addition of ADP) was 9.2 +/- 1.3 in control animals, 7.0 +/- 1.5 after 30 minutes of carotid occlusion, 9.0 +/- 1.2 after 30 minutes of reperfusion, and 5.8 +/- 0.8 after 5 1/2 hours of reperfusion. Superoxide dismutase activity of the forebrain mitochondria was 5.10 +/- 0.7 I.U./mg protein in control animals, decreased to 3.3 +/- 1.6 I.U./mg protein after 30 minutes of occlusion and remained at this level throughout the reperfusion period. These data confirm earlier reports that deterioration of mitochondrial function may contribute to the development of ischemic and post-ischemic brain tissue damage. It also appears possible that postischemic damage of mitochondrial function develops secondary to postischemic deterioration of tissue blood flow.  相似文献   

4.
Previous investigations of age-associated changes in flow-mediated vasodilation (FMD) in women have been limited to the upper extremity and have not accounted for possible age differences in the stimulus for dilation. The purpose of the present study was to compare age differences in brachial and popliteal FMD and its stimulus (changes in shear rate following occlusion). Ultrasound-derived diameters and Doppler flow velocities of the brachial and popliteal arteries were measured in 14 young (20- to 30-yr-old) and 14 older (60- to 79-yr-old) healthy women at rest and during and after 5 min of distal cuff occlusion. Resting diameters were similar (both P > 0.39) in both age groups. Peak shear rate did not differ with age in either artery: approximately 1,300-1,400 and approximately 400-500 s(-1) in brachial and popliteal arteries, respectively. FMD (percent change above diameter measured during occlusion) was approximately 50-60% lower (P < 0.05) in the brachial (15.8 + 0.8% vs. 8.1 + 1.5%) and popliteal (4.6 +/- 0.7% vs. 1.8 +/- 0.4%) arteries of the older women. The normalized response of the brachial and popliteal arteries (%FMD per unit change in shear rate) was also reduced with age (55% and 53%, respectively) but did not exhibit limb specificity. Additionally, endothelium-independent dilation, as assessed by administration of nitroglycerin, was similarly blunted (by 45-65%) in brachial and popliteal arteries of older women. These results suggest that 1) brachial and popliteal artery FMD (after 5 min of distal occlusion) are similarly reduced with age, 2) when normalized to the change in shear stimulus, both arteries are equally responsive to 5 min of distal cuff occlusion in women, and 3) the age-associated decline in FMD may be attributable in part to diminished smooth muscle responsiveness.  相似文献   

5.
Huang SS  Tsai MC  Chih CL  Hung LM  Tsai SK 《Life sciences》2001,68(9):1057-1065
Although vasomotion has been considered a feature of the microvascular bed under physiological conditions, it has also been observed following hypotension in several tissues. In this work, 158 mesenteric microvessels of 36 rats were investigated quantitatively in normovolemic and hemorrhaged animals, focussing on diameter changes, particularly vasomotion incidence and characteristics. The femoral arteries of Wistar rats (body weight BW = 188 +/- 23 g, mean +/- SD) anesthetized with pentobarbital were cannulated for arterial pressure (AP) monitoring and blood withdrawal. The protocol consisted of 15 min control and 30 min of hemorrhagic hypotension (AP = 52 +/- 5 mmHg, hemorrhaged vol. = 17 +/- 4 ml/kg BW). During control normovolemic conditions, analysis of mesenteric microcirculation using intravital videomicroscopy revealed neither arteriolar nor venular vasomotion. During hemorrhagic hypotension (HH) microvascular blood flow reduced to 25% of control. While venules did not show diameter changes during HH, arterioles contracted to 85 +/- 20% of control and arteriolar vasomotion appeared in 42% of the animals and 27% of the arterioles. The amplitude of arteriolar diameter change during HH relative to mean diameter and to control diameter averaged 65 +/- 24% (range: 32-129%) and 41 +/- 10% (range: 25-62%), respectively. Vasomotion analysis showed two major frequency components: 1.7 +/- 0.8 and 7.0 +/- 5.2 cycles/min. Arterioles showing vasomotion had a mean control diameter larger than the remaining arterioles and showed the largest constriction during HH. We conclude that hemorrhagic hypotension does not change venular diameter but induces arteriolar constriction and vasomotion in rat mesentery. This activity is expressed as slow waves with high amplitude and fast waves with low amplitude, and is dependent on vessel size.  相似文献   

6.
The cerebral ischemia in rats was induced by occluding bilateral common carotid arteries (BCCAO) for 30 min., followed by 45 min reperfusion. BCCAO caused significant depletion in superoxide dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and significant increase in lipid peroxidation along with severe neuronal damage in the brain. All the alterations except depletion in glutathione peroxidase and glutathione-S-transferase levels induced by cerebral ischemia were significantly attenuated by 15 days pretreatment with methanolic extract of P. dactylifera fruits (100, 300 mg/kg), whereas 30 mg/kg dose was insignificant in this regard. These results suggest the possible use P. dactylifera against bilateral common carotid artery occlusion induced oxidative stress and neuronal damage.  相似文献   

7.
Perivascular manipulation promoted by the positioning of a silicone collar around the common carotid arteries causes local inflammation and has been suggested as an animal model of atherosclerosis. This manipulation induces biochemical and morphological changes that are similar to those observed in the early stage of atherosclerosis in humans. Based on evidences showing that atherosclerosis is associated with cognitive deficits in humans, we presently investigated the temporal consequences of the bilateral positioning of silicone collars around the common carotid arteries (n = 15) on inhibitory avoidance memory retention in male Wistar rats tested in the elevated T-maze. The effects of this procedure were compared to those observed in sham-operated animals (n = 15) and to those observed in animals submitted to permanent bilateral occlusion of the common carotid arteries (n = 16). Additionally we studied the effects of the pretreatment with the non-selective anti-inflammatory drug indomethacin (n = 13) or the selective COX-2 inhibitor celecoxib (n = 12) and compared the effects to those of the pretreatment with vehicle (n = 11). The results showed that the silicone collar implants induced deficits in memory retention when animals were tested 2 and 4, but not 15 or 30, days after surgery. Permanent bilateral occlusion of the common carotid arteries impaired avoidance retention up to 30 days after surgery. Pretreatment with indomethacin (2 mg/kg/day) or celecoxib (5 mg/kg/day) post surgery and up to 3 days thereafter did not prevent memory deficits caused by silicone collar implants. Our data suggest that the prostanoids that participate in the inflammatory process triggered by the placement of the silicone collar do not seem responsible for the deficit in memory retention observed during the first days after collar placement.  相似文献   

8.
In newborn pigs, carbon monoxide (CO) contributes to regulation of cerebrovascular circulation. Results from isolated adult cerebral arteries suggest CO may have less dilatory potential in mature animals. However, few data are available on the direct effects of CO on cerebrovascular circulation in vivo except for those from newborn pigs. Therefore, we tested the hypothesis that i) rat cerebral arterioles dilate to CO in vivo and ii) CO-induced cerebrovascular dilatory responses are age dependent in pigs. Also, we examined whether the permissive role of nitric oxide in CO-induced dilation observed in piglets is present in older pigs and rats. Experiments used anesthetized newborn, 7-week-old, and juvenile (3- to 4-month-old) pigs and 3- to 4-month-old rats with closed cranial windows and topical applications of CO and sodium nitroprusside (SNP). Dilations to SNP were not different at different ages in pigs or between pigs and rats. CO produced pial arteriolar dilations in all groups. Dilation to 10(-5) M CO was reduced in juvenile pigs as compared to newborn and 7-week-old pigs, and tended to less at 10(-6) M CO. Dilations of rat pial arterioles to all concentrations were less than those of newborn and 7-week-old pigs, but not different from those of juvenile pig pial arterioles. In newborn and 7-week-old pigs, l-nitro-arginine (LNA) inhibited the dilation to CO, an effect reversed by a constant background of SNP. In contrast, LNA did not reduce dilation to CO in juvenile pigs or rats. In conclusion, rat pial arterioles like those in piglets dilate to CO in vivo, but there are age and species differences with regard to reactivity and interaction with NO.  相似文献   

9.
Homogeneous repair of nuclear genes after experimental stroke   总被引:3,自引:0,他引:3  
The repair of oxidative DNA lesions (ODLs) in the nucleus of ischemic cortical brain cells was examined following experimentally induced stroke by occluding the right middle cerebral artery and both common carotid arteries for 60-90 min followed by reperfusion in male long-Evans hooded rats. The control group consisted of sham-operated animals undergoing the same surgery without vessel occlusion. Using a gene-specific assay based upon the presence of Escherichia coli Fpg protein-sensitive sites, we noted that animals with stroke exhibited six and four ODLs per gene in the actin and DNA polymerase-beta genes, respectively. This was increased from one per four copies of each gene in the sham-operated control (p < 0.01). One half of the initial ODLs was repaired within 30 min, and 83% of them were repaired as early as 45 min of reperfusion. There was no further increase when gene repair was measured again at 2 h of reperfusion. The rates of active repair within 45 min of reperfusion were the same in these two genes (p = 0.103, ANOVA). BrdU (10 mg/kg) was administered via intraperitoneal injection at least one day before surgery. We observed that there was no significant incorporation of BrdU triphosphates into genomic DNA during active repair, but there were significant amounts of BrdU triphosphate in nuclear DNA after active repair. The result indicates that genomic repair of ODLs in the brain did not significantly incorporate BrdU, and the initiation of neurogenesis probably starts after the completion of repair in the brain.  相似文献   

10.
Using a TV installation for studying the microcirculation (with 30-160-fold magnification), the density of microvascular network in the pia matter of the rat brain sensomotor cortex was determined after intracerebral transplantation of mesenchymal stem cells (MSC) or (as control) of the MSC cultivation nutrition medium, or of saline. The results have shown that intracerebral transplantation does not change density of microvascular network in the pia mater of the ipsilateral hemisphere. Transplantation of the MSC led to a 1.8-fold increase of density of the pia matter of the contralateral hemisphere as compared with control animals; the number of arterioles in the same zone was 2.5-fold higher than in intact rats.  相似文献   

11.
Previous studies from this laboratory suggest that during juvenile growth, structural changes in the arteriolar network are accompanied by changes in some of the mechanisms responsible for regulation of tissue blood flow. To test the hypothesis that arteriolar myogenic behavior is altered with growth, we studied gracilis muscle arterioles isolated from Sprague-Dawley rats at two ages: 21-28 and 42-49 days. When studied at their respective in vivo pressures, the myogenic index (instantaneous slope of the active pressure-diameter curve) of arterioles from 42-49-day-old rats was more negative than that of arterioles from 21-28-day-old rats, indicating greater myogenic responsiveness. Endothelial denudation, or prostaglandin H(2) (PGH(2))/thromboxane A(2) (TxA(2)) receptor antagonism without denudation, significantly reduced the myogenic responsiveness of arterioles from the older rats over a wide range of pressures but had no consistent effects on the myogenic responsiveness of arterioles from the younger rats. The heme oxygenase inhibitor chromium (III) mesoporphyrin IX chloride had no effect on the myogenic activity of arterioles from either age group. These findings indicate that microvascular growth in young animals is accompanied by an increase in the myogenic behavior of arterioles, possibly because PGH(2) or TxA(2) assumes a role in reinforcing myogenic activity over this period. As a result, the relative contribution of myogenic activity to blood flow regulation in skeletal muscle may increase during rapid juvenile growth.  相似文献   

12.
Permanent bilateral occlusion of common carotid arteries in rats with different behaviour types led to non-uniform structural alterations in the hippocampus. In the majority of animals, morphological changes were diffuse (i.e. having no clear localisation in a definite region of the brain structure) and symmetrical (i.e. having no evident prevalence in one of the brain hemispheres). In 6.6% of survived animals, apart from diffuse structural changes, local and asymmetrical sites of lesions occurred in the hippocampus and mostly in the dorso-lateral thalamic nuclei of the right brain hemisphere. These local zones of strongly pronounced pathology corresponded to ischemic insults which were described earlier by other authors under transient cerebral ischemia. It is supposed that the occurrence of unilateral ischemic insults in a definite region of hippocampus and thalamus after bilateral occlusion of common carotid arteries is due to individual features of the anatomy of the vascular brain system which are found more frequently in rats with passive type of behaviour and in rats of the middle group than in rats with active type of behaviour.  相似文献   

13.
This study was performed to determine whether the brain can increase the number of perfused capillaries and arterioles supplying it regionally during hemorrhage. This was done using a technique to simultaneously determine total and perfused regional arteriolar and capillary morphology. Conscious Long-Evans rats served as unbled controls or were bled 65 mmHg or to 40-45 mmHg and stabilized for 30 min. Regional cerebral blood flow was determined using [14C]iodoantipyrine in half of these animals and fluorescein isothiocyanate-dextran was injected in the other half for determination of perfused cerebral microvascular morphometric indexes. The total microvasculature was labeled postmortem via an alkaline phosphatase stain. Regional cerebral blood flow was significantly increased in animals bled to 65 mmHg. During hemorrhage to 40-45 mmHg, cerebral blood flow was reduced 50% (from 59 +/- 28 to 26 +/- 11 ml X min-1 X 100 g-1, mean +/- SD) with no regional redistribution. For all treatments, total capillary density ranged from 400 to 500 capillaries/mm2, and in controls 47% were perfused. Animals bled to 65 mmHg did not mobilize their unperfused microvascular reserve even though they showed a slight tendency to do so. During hemorrhage to 40-45 mmHg, this percent increased significantly to 57% with the largest increase occurring in the pons. Approximately 51% of arterioles were perfused in controls and this was not different compared with the percent perfused during hemorrhage. Despite the overall lack of mobilization of unperfused arterioles, some regions within the brain significantly mobilized their reserves with severe hemorrhage, e.g., hippocampus (78%), hypothalamus (67%), and medulla (73%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The purpose of this study was to test the hypothesis that interval sprint training (IST) selectively increases endothelium-dependent dilation (EDD) and endothelial nitric oxide synthase and/or superoxide dismutase-1 protein content in arteries and/or arterioles that perfuse the white portion of rat gastrocnemius muscle (WG). Male Sprague-Dawley rats completed 10 wk of IST (n = 62) or remained sedentary (Sed) (n = 63). IST rats performed six 2.5-min exercise bouts, with 4.5 min of rest between bouts (60 m/min, 15% incline), 5 days/wk. EDD was assessed from acetylcholine (ACh)-induced increases in muscle blood flow measured in situ and by ACh-induced dilation of arteries and arterioles [first to third order (1A-3A)] that perfuse red gastrocnemius muscle (RG) and WG. Artery protein content was determined with immunoblot analysis. ACh-induced increases in blood flow were enhanced in WG of IST rats. eNOS content was increased in conduit arteries, gastrocnemius feed artery, and fourth-order arterioles from WG and fifth-order arterioles of RG but not in 2As from RG. EDD was examined in 2As and 3As from a subset of IST and Sed rats. Arterioles were canulated with micropipettes, and intraluminal pressure was set at 60 cmH2O. Results indicate that passive diameter (measured in 0 calcium PSS) of WG 2As was similar in IST and Sed, whereas diameter of WG 3As was greater in IST (96 +/- 8 microm) than Sed (73 +/- 4 microm). WG 2As and 3As of IST rats exhibited greater spontaneous tone, but sensitivity to stretch, phenylephrine, and sodium nitroprusside was similar to Sed arterioles. ACh-induced dilation was enhanced by IST in WG 2As but not in RG 2As or WG 3As. We conclude that IST induces vascular adaptations nonuniformly among arteries that perfuse WG muscle.  相似文献   

15.
Effect of potassium nitrate (KNO3) on the dynamics of neurological disorders and lethality in rats as sequelae of brain ischemia induced by a single-step bilateral common carotid artery occlusion were investigated in Wistar rats. KNO3 at a dose of 5 mg/1000 g administered 60 min prior to the occlusion of the two carotid arteries reliably reduced the severity of neurological disorders and lethality in rats.  相似文献   

16.
The purpose of this study was to test the hypothesis that endothelium-dependent dilation is impaired in soleus resistance arteries from hindlimb-unweighted (HLU) rats. Male Sprague-Dawley rats (300-350 g) were exposed to HLU (n = 14) or weight-bearing control (Con, n = 14) conditions for 14 days. After the 14-day treatment period, soleus first-order (1A) arterioles were isolated and cannulated with micropipettes to assess vasodilator responses to an endothelium-dependent dilator, ACh (10(-9)-10(-4) M), and an endothelium-independent dilator, sodium nitroprusside (SNP, 10(-9)-10(-4) M). Arterioles from HLU rats were smaller than Con arterioles (maximal passive diameter = 140 +/- 4 and 121 +/- 4 microm in Con and HLU, respectively) but developed similar spontaneous myogenic tone (43 +/- 3 and 45 +/- 3% in Con and HLU, respectively). Arteries from Con and HLU rats dilated in response to increasing doses of ACh, but dilation was impaired in arterioles from HLU rats (P = 0.03), as was maximal dilation to ACh (85 +/- 4 and 65 +/- 4% possible dilation in Con and HLU, respectively). Inhibition of nitric oxide (NO) synthase (NOS) with N(omega)-nitro-L-arginine (300 microM) reduced ACh dilation by approximately 40% in arterioles from Con rats and eliminated dilation in arterioles from HLU rats. The cyclooxygenase inhibitor indomethacin (50 microM) did not significantly alter dilation to ACh in either group. Treatment with N(omega)-nitro-L-arginine + indomethacin eliminated all ACh dilation in Con and HLU rats. Dilation to sodium nitroprusside was not different between groups (P = 0.98). To determine whether HLU decreased expression of endothelial cell NOS (ecNOS), mRNA and protein levels were measured in single arterioles with RT-PCR and immunoblot analysis. The ecNOS mRNA and protein expression was significantly lower in arterioles from HLU rats than in Con arterioles (20 and 65%, respectively). Collectively, these data indicate that HLU impairs ACh dilation in soleus 1A arterioles, in part because of alterations in the NO pathway.  相似文献   

17.
This study determined alterations to nitric oxide (NO)-dependent dilation of skeletal muscle arterioles from obese (OZR) versus lean Zucker rats (LZR). In situ cremaster muscle arterioles from both groups were viewed via television microscopy, and vessel dilation was measured with a video micrometer. Arteriolar dilation to acetylcholine and sodium nitroprusside was reduced in OZR versus LZR, although dilation to aprikalim was unaltered. NO-dependent flow-induced arteriolar dilation (via parallel microvessel occlusion) was attenuated in OZR, impairing arteriolar ability to regulate wall shear rate. Vascular superoxide levels, as assessed by dihydroethidine fluorescence, were elevated in OZR versus LZR. Treatment of cremaster muscles of OZR with the superoxide scavengers polyethylene glycol-superoxide dismutase and catalase improved arteriolar dilation to acetylcholine and sodium nitroprusside and restored flow-induced dilation and microvascular ability to regulate wall shear rate. These results suggest that NO-dependent dilation of skeletal muscle microvessels in OZR is impaired due to increased levels of superoxide. Taken together, these data suggest that the development of diabetes and hypertension in OZR may be associated with an impaired skeletal muscle perfusion via an elevated vascular oxidant stress.  相似文献   

18.
In order to explain the differences in the hormone stimulated lipolysis during ontogenic development of rats, the activity of adenylate cyclase was determined in crude plasma membranes of subcutaneous adipocytes of 5, 14, 21 and 45 to 55-day-old animals. Stimulatory effects of nonhormonal and hormonal agents were expressed as the increment in percentage of basal values which were not significantly changed in the age groups studied. The highest stimulatory effect was observed after sodium fluoride in 14 and 21-day-old rats. Guanylylimidodiphosphate and GTP revealed the lowest stimulatory effects in adult animals (greater than 45-day-old). The beta-adrenergic agent isoproterenol revealed the highest stimulatory effect in the 5 and 45-day-old group while in the preparation from 14-day-old rats the adenylate cyclase activity was significantly lower. On the other hand, tetracosactide (beta 1-24-corticotropin) revealed the smallest stimulatory effect on the preparation from 5-day-old rats; its stimulatory effect steadily increased and reached the highest value in adenylate cyclase preparations from adult animals. It can be concluded that the adenylate cyclase system in subcutaneous adipocytes is already basically mature at early ontogenic stages of development in rats. Nevertheless, the explanation for the small variations of the enzyme activity in different age groups requires further study.  相似文献   

19.
Nonlinear rats, which survived after occlusion of one or two common carotid arteries (N = 30, about 30% survived) were examined. Sham-operated animals formed a control group. In animals with ischemia, the total sleep duration in a three-hour period was substantially increased as compared to control group at the expense of a substantial growth (8-9 times) of paradoxical sleep (PS) phase. In the animals with ischemia, a sharp increase in PS was observed on the first postoperation day, and then PS gradually decreased from the first to the fortieth days. The results suggest the PS involvement in the brain intrinsic reparation functions.  相似文献   

20.
Flow-induced dilation of gracilis muscle arterioles was examined in both genders of control rats and rats chronically treated with N(omega)-nitro-L-arginine methyl ester (L-NAME). After L-NAME treatment (4 wk), systolic blood pressure was significantly increased compared with control, whereas the plasma concentration of nitrate/nitrite was significantly reduced. Isolated and pressurized arterioles dilated significantly in response to increases in flow (0-25 microl/min). Flow-induced dilation was comparable in arterioles of control and L-NAME-treated rats but was significantly greater in female than in male rats. L-NAME + indomethacin, which abolished flow-induced dilation in arterioles of male control rats, inhibited the dilation by only ~75% in female control rats. The residual portion of the response was eliminated by additional administration of miconazole, an inhibitor of cytochrome P-450. Indomethacin did not affect the dilation in female L-NAME-treated rats but completely inhibited the response in male L-NAME-treated rats. The indomethacin-insensitive, flow-induced dilation in female L-NAME-treated arterioles was abolished by miconazole, 6-(2-proparglyoxyphenyl)hexanoic acid, or charybdotoxin. Thus an augmented release of endothelial prostaglandins accounts for the preserved flow-induced dilation in arterioles of male rats, whereas a metabolite of cytochrome P-450 is responsible for the maintenance of flow-induced dilation in female rats, suggesting important differences in the adaptation of the endothelium of arterioles from male and female rats to the lack of nitric oxide (NO) synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号