首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kono M  Crouch RK  Oprian DD 《Biochemistry》2005,44(2):799-804
A triple mutant (F86L/T93P/S118T; bovine rhodopsin numbering) of the tiger salamander UV cone pigment appears to be trapped in an open conformation that is metarhodopsin-II-like. The pigment is able to activate transducin in the dark, and the ligand-free apoprotein is also able to activate transducin constitutively. The pigment permits protons and chloride ions from solution access to the active site as it displays a pH- and NaCl-dependent absorption spectrum not observed with the wild-type pigment. However, the wild-type properties of light-dependent activity and a pH-independent absorption spectrum are recovered upon reconstitution of the triple mutant with 11-cis-9-demethyl retinal. These results suggest that binding the native chromophore cannot deactivate the protein because of steric interactions between the protein, possibly residue 118, and the 9-methyl group of the chromophore. Furthermore, the absorption spectrum of the 9-demethyl retinal regenerated pigment exhibits a band broader and with lower extinction at the absorption maximum than either the human blue or salamander UV wild-type pigments generated with the same retinal analogue. The broad spectrum appears to be comprised of two or more species and can be well-fit by a sum of scaled spectra of the two wild-type pigments. Binding the chromophore appears to trap the pigment in two or more conformations. The triple mutant reported here represents the first example of a dark-active cone pigment and constitutively active cone opsin.  相似文献   

2.
We report experiments designed to test the hypothesis that the aqueous solubility of 11-cis-retinoids plays a significant role in the rate of visual pigment regeneration. Therefore, we have compared the aqueous solubility and the partition coefficients in photoreceptor membranes of native 11-cis-retinal and an analogue retinoid, 11-cis 4-OH retinal, which has a significantly higher solubility in aqueous medium. We have then correlated these parameters with the rates of pigment regeneration and sensitivity recovery that are observed when bleached intact salamander rod photoreceptors are treated with physiological solutions containing these retinoids. We report the following results: (a) 11-cis 4-OH retinal is more soluble in aqueous buffer than 11-cis-retinal. (b) Both 11-cis-retinal and 11-cis 4-OH retinal have extremely high partition coefficients in photoreceptor membranes, though the partition coefficient of 11-cis-retinal is roughly 50-fold greater than that of 11-cis 4-OH retinal. (c) Intact bleached isolated rods treated with solutions containing equimolar amounts of 11-cis-retinal or 11-cis 4-OH retinal form functional visual pigments that promote full recovery of dark current, sensitivity, and response kinetics. However, rods treated with 11-cis 4-OH retinal regenerated on average fivefold faster than rods treated with 11-cis-retinal. (d) Pigment regeneration from recombinant and wild-type opsin in solution is slower when treated with 11-cis 4-OH retinal than with 11-cis-retinal. Based on these observations, we propose a model in which aqueous solubility of cis-retinoids within the photoreceptor cytosol can place a limit on the rate of visual pigment regeneration in vertebrate photoreceptors. We conclude that the cytosolic gap between the plasma membrane and the disk membranes presents a bottleneck for retinoid flux that results in slowed pigment regeneration and dark adaptation in rod photoreceptors.  相似文献   

3.
4.
Phototransduction starts with the activation of a rhodopsin (respectively, coneopsin) molecule, located in the outer segment of rod (respectively, cone) photoreceptors. The subsequent amplification pathway proceeds via the G-protein transducin to the activation of phosphodiesterase (PDE), a G-protein coupled effector enzyme. In this article, we study the dynamics of PDE activation by constructing a Markov model that is based on the underlying chemical reactions including multiple rhodopsin phosphorylations. We derive explicit equations for the mean and the variance of activated PDE. Our analysis reveals that a low rhodopsin lifetime variance is neither necessary nor sufficient to achieve reliable PDE activation. The numerical simulations show that during the rising phase the variability of PDE activation is much lower compared to the recovery phase, and this property depends crucially on the transducin activation rates. Furthermore, we find that the dynamics of the activation process greatly differs depending on whether rhodopsin or PDE deactivation limits the recovery of the photoresponse. Finally, our simulations for cones show that only very few PDEs are activated by an excited photopigment, which might explain why in S-cones no single photon response can be observed.  相似文献   

5.
The Ca2+-binding protein recoverin may regulate visual transduction in retinal rods and cones, but its functional role and mechanism of action remain controversial. We compared the photoresponses of rods from control mice and from mice in which the recoverin gene was knocked out. Our analysis indicates that Ca2+-recoverin prolongs the dark-adapted flash response and increases the rod's sensitivity to dim steady light. Knockout rods had faster Ca2+ dynamics, indicating that recoverin is a significant Ca2+ buffer in the outer segment, but incorporation of exogenous buffer did not restore wild-type behavior. We infer that Ca2+-recoverin potentiates light-triggered phosphodiesterase activity, probably by effectively prolonging the catalytic activity of photoexcited rhodopsin.  相似文献   

6.
The hydrolysis-resistant GTP analogue GTP-gamma-S was introduced into rods isolated from the retina of the salamander Ambystoma tigrinum to study the origin of the persistent excitation induced by intense bleaching illumination. Dialysis of a dark-adapted rod with a whole- cell patch pipette containing 2 mM GTP-gamma-S resulted in a gradual decrease in circulating current. If the rod was first bleached and its sensitivity allowed to stabilize for at least 30 min, then dialysis with GTP-gamma-S produced a much faster current decay. The circulating current could be restored by superfusion with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, suggesting that the decay in current originated from persistent excitation of the phosphodiesterase by transducin bound to GTP-gamma-S. We conclude that the persistent excitation which follows bleaching is likely to involve the GTP-binding protein transducin, which mediates the normal photoresponse. This observation suggests that a form of rhodopsin which persists long after bleaching can activate transducin much as does photoisomerized rhodopsin, although with considerably lower gain.  相似文献   

7.
Effects of inositol-1,4,5-trisphosphate injections into salamander rods   总被引:1,自引:0,他引:1  
Solitary rods were isolated by trituration of salamander (Ambystoma tigrinum) retinas. One barrel of an intracellular, double-barreled micropipette was used to record membrane voltage; the other barrel was used to pressure-inject inositol-1,4,5-trisphosphate. The injection of inositol-1,4,5 -trisphosphate induced a reversible hyperpolarization of the rod membrane. Injections of inositol-1,4,5-trisphosphate decreased the size of receptor potentials induced by dim lights. Conversely, light decreased the responses of the rod to injections of inositol-1,4,5-trisphosphate. These results suggest that inositol-1,4,5-trisphosphate might be involved in the modulation of rod membrane voltage during phototransduction.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPCase) from light- and dark-adapted maize leaves was rapidly purified in the presence of L-malate and glycerol to apparent electrophoretic homogeneity by ammonium sulfate fractionation, hydroxylapatite chromatography, and fast-protein liquid chromatography on Mono Q. The resulting preparations were totally devoid of pyruvate, orthophosphate dikinase protein based on immunoblot analysis. Throughout the purification, both forms of PEPCase retained their different enzymatic properties. The specific activity of the light enzyme was consistently about twice that of the dark form when assayed at suboptimal (but physiological) pH (pH 7.0-7.3), and the former was also less sensitive to feedback inhibition by L-malate than that from darkened leaves under various conditions. Covalently bound phosphate and high-performance liquid chromatography-based phosphoamino acid analyses showed that both forms of purified PEPCase were phosphorylated exclusively on serine residues, but the degree of phosphorylation was about 50% greater in the light enzyme. Notably, incubation of purified PEPCase in vitro with exogenous alkaline phosphatase led to an increase in malate sensitivity and a decrease in specific activity of the light form enzyme to levels observed with the dark form, which was essentially not affected by phosphatase treatment. These results with the purified enzyme from light- and dark-adapted maize leaves indicate that the light-induced changes in activity and malate sensitivity of C4 PEPCase are related, at least in part, to the degree of covalent seryl phosphorylation of the protein in vivo.  相似文献   

9.
Light and dark adaptation in Phycomyces phototropism   总被引:3,自引:1,他引:2       下载免费PDF全文
Light and dark adaptation of the phototropism of Phycomyces sporangiophores were analyzed in the intensity range of 10(-7)-6 W X m- 2. The experiments were designed to test the validity of the Delbruck- Reichardt model of adaptation (Delbruck, M., and W. Reichardt, 1956, Cellular Mechanisms in Differentiation and Growth, 3-44), and the kinetics were measured by the phototropic delay method. We found that their model describes adequately only changes of the adaptation level after small, relatively short intensity changes. For dark adaptation, we found a biphasic decay with two time constants of b1 = 1-2 min and b2 = 6.5-10 min. The model fails for light adaptation, in which the level of adaptation can overshoot the actual intensity level before it relaxes to the new intensity. The light adaptation kinetics depend critically on the height of the applied pulse as well as the intensity range. Both these features are incompatible with the Delbruck-Reichardt model and indicate that light and dark adaptation are regulated by different mechanisms. The comparison of the dark adaptation kinetics with the time course of the dark growth response shows that Phycomyces has two adaptation mechanisms: an input adaptation, which operates for the range adjustment, and an output adaptation, which directly modulates the growth response. The analysis of four different types of behavioral mutants permitted a partial genetic dissection of the adaptation mechanism. The hypertropic strain L82 and mutants with defects in the madA gene have qualitatively the same adaptation behavior as the wild type; however, the adaptation constants are altered in these strains. Mutation of the madB gene leads to loss of the fast component of the dark adaptation kinetics and to overshooting of the light adaptation under conditions where the wild type does not overshoot. Another mutant with a defect in the madC gene shows abnormal behavior after steps up in light intensity. Since the madB and madC mutants have been associated with the receptor pigment, we infer that at least part of the adaptation process is mediated by the receptor pigment.  相似文献   

10.
Light and dark adaptation of halorhodopsin   总被引:1,自引:0,他引:1  
Dark incubation of envelope vesicles derived from a strain of Halobacterium halobium that lacks bacteriorhodopsin but contains halorhodopsin and a third rhodopsin-like pigment caused a decrease in the flash yield [the amplitude of a transient absorbance change of flash reactive component(s) by flash] of halorhodopsin but not the rhodopsin-like pigment. The flash yield decreased to reach a low steady level after incubation for about 4 days in the dark. The flash yield of halorhodopsin at any stage of dark incubation was increased by actinic illumination of the vesicles. The flash yield at 490 nm (absorbance increase) was found to be approximately proportional to that at 590 nm (absorbance decrease). These results indicate that halorhodopsin in the envelope vesicles has two forms, dark and light adapted, and that the halorhodopsin phototransient absorbing at 490 nm is originated from the light-adapted form. A difference spectrum between these two forms of halorhodopsin shows that the light-adapted halorhodopsin was red-shifted from the dark-adapted form. The light-induced membrane potential was measured by tetraphenylphosphonium uptake. The uptake by the dark-adapted vesicles was slower than that by the light-adapted vesicles, suggesting that only the light-adapted halorhodopsin has ion-transporting activity.  相似文献   

11.
Light and dark assimilation of nitrate in plants   总被引:3,自引:3,他引:3  
Abstract. Heterotrophic assimilation of nitrate in roots and leaves in darkness is closely linked with the oxidative pentose phosphate pathway. The supply of glucose-6-phosphate to roots and chloroplasts in leaves in darkness is essential for assimilation of nitrite into amino acids. When green leaves are exposed to light, the key enzyme, glucoses-phosphate dehydrogenase, is inhibited by reduction with thioredoxin. Hence the dark nitrate assimilatory pathway is inhibited under photoautotrophic conditions and replaced by regulatory reactions functioning in light. On account of direct photo-synthetic reduction of nitrite in chloroplasts and availability of excess NADH for nitrate reduclase, the rate of nitrate assimilation is extremely rapid in light. Under dark anaerobic conditions also nitrate is equally rapidly reduced to nitrite on account of abolition of competition for NADH between nitrate reductase and mitochondrial oxidation.  相似文献   

12.
Light and dark adaptation in Phycomyces light-growth response   总被引:1,自引:1,他引:1       下载免费PDF全文
Sporangiophores of the fungus Phycomyces exhibit adaptation to light stimuli over a dynamic range of 10(10). This range applies to both phototropism and the closely related light-growth response; in the latter response, the elongation rate is modulated transiently by changes in the light intensity. We have performed light- and dark- adaptation experiments on growing sporangiophores using an automated tracking machine that allows a continuous measurement of growth velocity under controlled conditions. The results are examined in terms of the adaptation model of Delbruck and Reichardt (1956, Cellular Mechanisms in Differentiation and Growth, 3-44). The "level of adaptation," A, was inferred from responses to test pulses of light by means of a series of intensity-response curves. For dark adaptation to steps down in the normal intensity range (10(-6)-10(-2) W/m2), A decays exponentially with a time constant b = 6.1 +/- 0.3 min. This result is in agreement with the model. Higher-order kinetics are indicated, however, for dark adaptation in the high-intensity range (10(-2)-1 W/m2). Adaptation in this range is compared with predictions of a model relating changes in A to the inactivation and recovery of a receptor pigment. In response to steps up in intensity in the normal range, A was found to increase rapidly, overshoot the applied intensity level, and then relax to that level within 40 min. These results are incompatible with the Delbruck-Reichardt model or any simple generalizations of it. The asymmetry and overshoot are similar to adaptation phenomena observed in systems as diverse as bacterial chemotaxis and human vision. It appears likely that light and dark adaptation in Phycomyces are mediated by altogether different processes.  相似文献   

13.
Luminescent lures, counter-shading in the dark blue sea, flashes of light intensive enough to temporarily blind a predator, love fireworks in the night to impress a mate, and toadstools that glow to attract parasitic wasps--these are just some of the many examples of bioluminescence at work in Nature. But how is the biological light produced? What are its evolutionary roots? Why are there so many different uses for the light?  相似文献   

14.
The physical origin and functional significance of the near infra-red light scattering changes observable upon flash illumination of diluted suspensions of magnetically oriented, permeabilised frog retinal rods has been reinvestigated with particular attention paid to the degree with which transducin remains attached to the membrane. In the absence of GTP, the so called binding signal is shown to include two components of distinctive origins, widely different kinetics, and whose relative amplitudes depend on the dilution of the suspension and resulting detachment of transducin from the disc membrane. The fast component is a consequence of the fast interaction between photoexcited rhodopsin (R*) and the transducin remaining on the membrane. Its kinetics monitors a structural modification of the discs caused by a change in electrostatic interaction between closely packed membranes upon the formation of R*-T complexes. The slow component monitors the slow rebinding to the membrane and possible subsequent interaction with excess R* of T-GDP which, in spite of its low solubility, had eluted into solution given the high dilution of the permeated rods. In the presence of GTP, the so called dissociation signal includes a fast, anisotropic release component that specifically monitors the release into the interdiscal space of T -GTP formed from the membrane-bound pool, and a slower isotropic loss component monitoring the leakage from the permeated rod of the excess T -GTP which did not interact with the cGMP phosphodiesterase. The amplitudes of both components depend exclusively on the membrane bound T-GDP pool. The kinetics of the loss component is limited by the size and degree of permeation of the rod fragments, rather than by the dissociation rate of T -GTP from the membrane.Abbreviations ROS rod outer segment - R rhodopsin - R* photoactivated rhodopsin - T, T-GDP, T -GDP, T -GTP, T transducin and its various forms - T mb, T sol: T bound to membrane or soluble - PDE cGMP-phosphodiesterase - GTP guanosine 5-triphosphate - GDP guanosine 5-diphosphate - GDP S guanosine 5-O-(2-thiodiphosphate) - cGMP guanosine-3-5 cyclic-monophosphate - DTT dithiothreitol - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethane sulfonic acid - TRIS Tris (hydroxymethyl)aminomethane - SDS sodium dodecyl sulfate  相似文献   

15.
Membrane current was recorded from a single primate rod with a suction pipette while the cell was bath perfused with solutions maintained at a temperature of approximately 38 degrees C. A transient inward current was observed at the onset of bright illumination after briefly exposing the outer segment in darkness to Ringer's (Locke) solution containing 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cGMP phosphodiesterase. After briefly removing external Na+ from around the outer segment in darkness, a similar current was observed upon Na+ restoration in bright light. By analogy to amphibian rods, this inward current was interpreted to represent the activity of an electrogenic Na(+)-dependent Ca2+ efflux, which under physiological conditions in the light is expected to reduce the free Ca2+ in the outer segment and provide negative feedback (the "Ca2+ feedback") to the phototransduction process. The exchange current had a saturated amplitude of up to approximately 5 pA and a decline time course that appeared to have more than one exponential component. In the absence of the Ca2+ feedback, made possible by removing the Ca2+ influx and efflux at the outer segment using a 0 Na(+)-0 Ca2+ external solution, the response of a rod to a dim flash was two to three times larger and had a longer time to peak than in physiological solution. These changes can be approximately accounted for by a simple model describing the Ca2+ feedback in primate rods. The dark hydrolytic rate for cGMP was estimated to be 1.2 s-1. The incremental hydrolytic rate, beta*(t), activated by one photoisomerization was approximately 0.09 s-1 at its peak, with a time-integrated activity, integral of beta*(t)dt, of approximately 0.033, both numbers being derived assuming spatial homogeneity in the outer segment. Finally, we have found that primate rods adapt to light in much the same way as amphibian and other mammalian rods, such as showing a Weber-Fechner relation between flash sensitivity and background light. The Ca2+ feedback model we have constructed can also explain this feature reasonably well.  相似文献   

16.
The effects of divalent cations on the gating of the cGMP-activated channel, and the effects of gating on the movement of divalent cations in and out of the channel's pore were studied by recording macroscopic currents in excised membrane patches from salamander retinal rods. The fractional block of cGMP-activated Na+ currents by internal and external Mg2+ as well as internal Ca2+ was nearly independent of cGMP concentration. This indicates that Mg2+ and Ca2+ bind with similar affinity to open and closed states of the channel. In contrast, the efficiency of block by internal Cd2+ or Zn2+ increased in proportion to the fraction of open channels, indicating that these ions preferentially occupy open channels. The kinetics of block by internal Ni2+, which competes with Mg2+ but blocks more slowly, were found to be unaffected by the fraction of channels open. External Ni2+, however, blocked and unblocked much more rapidly when channels were mostly open. This suggests that within the pore a gate is located between the binding site(s) for ions and the extracellular mouth of the channel. Micromolar concentrations of the transition metal divalent cations Ni2+, Cd2+, Zn2+, and Mn2+ applied to the cytoplasmic surface of a patch potentiated the response to subsaturating concentrations of cGMP without affecting the maximum current induced by saturating cGMP. The concentration of cGMP that opened half the channels was often lowered by a factor of three or more. Potentiation persisted after the experimental chamber was washed with divalent-free solution and fresh cGMP was applied, indicating that it does not result from an interaction between divalent cations and cGMP in solution; 1 mM EDTA or isotonic MgCl2 reversed potentiation. Voltage-jump experiments suggest that potentiation results from an increase in the rate of cGMP binding. Lowering the ionic strength of the bathing solution enhanced potentiation, suggesting that it involves electrostatic interactions. The strong electrostatic effect on cGMP binding and absence of effect on ion permeation through open channels implies that the cGMP binding sites on the channel are well separated from the permeation pathway.  相似文献   

17.
Block by L-cis-diltiazem of the cyclic GMP-activated conductance was studied in excised inside-out patches from the salamander rod outer segment. When L-cis-diltiazem was applied from the cytoplasmic face of the patch, current suppression increased monotonically with membrane depolarization, the ratio of blocked to unblocked current varying e-fold in 50 mV. This suggests that L-cis-diltiazem interacts with a binding site located about half-way across the membrane field, and is unable to fully traverse the cyclic GMP-activated channel. The kinetics of block were accelerated by increasing L-cis-diltiazem concentration and by depolarization. These results can be fitted by a single barrier model in which the barrier peak is located about a third of the way across the membrane field from the cytoplasmic face. Application of L-cis-diltiazem from the extracellular face of the patch also resulted in an enhancement of block with membrane depolarization. Indirect evidence supports the notion that this block resulted from partition of the unchanged form of the blocker across the membrane, and its subsequent interaction with the cytoplasmic face of the conductance.  相似文献   

18.
Examination of nitrate reductase (NR, EC 1.6.6.1) activity in crude extracts made from squash leaves before and after a light/dark transition, indicates the existence of two different forms of nitrate reductase; a 'light form' with a pH optimum of 7.8 that is not inhibited by calcium or magnesium, and a 'dark form' with a pH optimum of 7.6 that is strongly inhibited by calcium or magnesium. The same properties also characterise purified NR. The 'light and dark forms' of NR correspond to the two kinetically different forms of purified NR showing (1) linear product formation and (2) delayed product formation, i.e. hysteretic behaviour.  相似文献   

19.
The kinetics of activation and inactivation in the phototransduction pathway of developing Xenopus rods were studied. The gain of the activation steps in transduction (amplification) increased and photoresponses became more rapid as the rods matured from the larval to the adult stage. The time to peak was significantly shorter in adults (1.3 s) than tadpoles (2 s). Moreover, adult rods recovered twice as fast from saturating flashes than did larval rods without changes of the dominant time constant (2.5 s). Guanylate cyclase (GC) activity, determined using IBMX steps, increased in adult rods from approximately 1.1 s(-1) to 3.7 s(-1) 5 s after a saturating flash delivering 6,000 photoisomerizations. In larval rods, it increased from 1.8 s(-1) to 4.0 s(-1) 9 s after an equivalent flash. However, the ratio of amplification to the measured dark phosphodiesterase activity was constant. Guanylate cyclase-activating protein (GCAP1) levels and normalized Na+/Ca2+, K+ exchanger currents were increased in adults compared with tadpoles. Together, these results are consistent with the acceleration of the recovery phase in adult rods via developmental regulation of calcium homeostasis. Despite these large changes, the single photon response amplitude was approximately 0.6 pA throughout development. Reduction of calcium feedback with BAPTA increased adult single photon response amplitudes threefold and reduced its cutoff frequency to that observed with tadpole rods. Linear mathematical modeling suggests that calcium-dependent feedback can account for the observed differences in the power spectra of larval and adult rods. We conclude that larval Xenopus maximize sensitivity at the expense of slower response kinetics while adults maximize response kinetics at the expense of sensitivity.  相似文献   

20.
Anionic activation of rod outer segment phosphodiesterase by vanadate, molybdate and tungstate is demonstrated. Comparisons are made to adenylate cyclase, which is known to be activated by vanadate and molybdate but not by tungstate. In view of the differences in anionic activation between these two important enzymatic regulators of intracellular cyclic nucleotide metabolism, it is possible that tungstate can be used as a selective probe for the effects of phosphodiesterase activity in photoreceptors and other cells. The known electrophysiological stimulation of Limulus photoreceptors by these anions is also interpreted in light of our results. If anionic production of quantum bumps in Limulus photoreceptors is mediated by changes in cyclic nucleotides, then the electrophysiological response of Limulus photoreceptors to tungstate may indicate a role for phosphodiesterase rather than adenylate cyclase in mediating light-induced cyclic nucleotide alterations in this cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号