首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of external K+, H+ and Ca2+ concentrations on the intracellular K+ concentration, [K+]i, and the K+-ATPase activity in 2-day-old mung bean roots [ Vigna mungo (L.) Hepper] were investigated. [K+]i, in mung bean roots was markedly decreased by external K+ or H+ stress and did not recover the initial value even after the stress was removed. This decrease in [K+]i, gradually disappeared with the addition of (Ca2+. Ca2+ may offset the harmful effects of ion stress. Ca2+ seems to have two effects on K+ transport; control of K+ permeability and activation of K+ uptake, although K+-ATPase activity was inhibited by Ca2+ concentrations higher than 10–4 M. We suggest that Ca2+ activates K+ uptake indirectly through the acidification of the cytoplasm.  相似文献   

2.
Abstract An alkaliphilic cyanobacterium characterized as a Synechocystis species was purified from a soil sample taken from a village in Java, Indonesia, by its preferential growth at elevated pH; it grew optimally at pH 9.5. Phosphorus nuclear magnetic resonance studies showed that the organism can maintain a ΔpH of over 2 pH units at an external pH of 10. It was observed that the viability of the organism in the dark was dependent on sodium ions. Evidence from experiments in which the extrusion of Na+ was measured from cells subjected to an alkali shock suggests that the organism possesses a Na+ / H+ electrogenic antiporter which is used for the maintenance of pH homeostasis.  相似文献   

3.
In embryos of the sea urchin, Hemicentrotus pulcherrimus , as well as in cultured cells derived from isolated micromeres, spicule formation was inhibited by allylisothiocyanate, an inhibitor of H+, K+-ATPase, at above 0.5 μM and was almost completely blocked at above 10 μM. Amiloride, an inhibitor of Na+, H+ antiporter, at above 100 μM exerted only slight inhibitory effect, if any, on spicule formation. Intravesicular acidification, determined using [ dimethylamine -14C]-aminopyrine as a pH probe, was observed in the presence of ATP and 200 mM KCl in microsome fraction obtained from embryos at the post gastrula stage, at which embryos underwent spicule calcification. Intravesicular acidification and K+-dependent ATPase activity were almost completely inhibited by allylisothiocyanate at 10 μM. Allylisothiocyanate-sensitive ATPase activity was found mainly in the mesenchyme cells with spicules isolated from prisms. H+, K+-ATPase, an H+ pump, probably mediates H+ release to accelerate CaCO3 deposition from Ca2+, CO2 and H2O in the primary mesenchyme cells. Intravesicular acidification was stimulated by valinomycin at the late gastrula and the prism stages but not at the pluteus stage. K+ permeability probably increases after the prism stage to activate H+ release.  相似文献   

4.
Abstract. Rates of proton extrusion and potassium (86Rb) influx by intact roots of barley ( Hordeum vulgare cvs . Fergus, Conquest and Betzes) plants were simultaneously measured in short-term (15min) experiments. The nature and extent of apparent coupling between these ion fluxes was explored by manipulating conditions of temperature, pH and cation composition and concentration during flux determinations. In addition, the influence of salt status upon these fluxes was examined. At low K+ concentrations (0.01 to 1 mol m−3), H+ efflux and K+ influx were strongly correlated in both low- and high-K+ roots, although K+: H+ exchange stoichiometries were almost consistently greater than 2:1. At higher concentrations (1 to 5 mol m−3), H+ efflux was either reduced or remained unchanged while K+ influxes increased. In the presence of Na2SO4, rates of H+ extrusion demonstrated similar cation dependence, although below 10 mol m−3 Na2SO4, H+ fluxes were generally 50% lower than in equivalent concentrations of K2SO4. These observations are considered in the context of current hypotheses regarding the mechanisms of k+/H+ exchange.  相似文献   

5.
In this study, amiodarone, at very low concentrations, produced a clear efflux of K+. Increasing concentrations also produced an influx of protons, resulting in an increase of the external pH and a decrease of the internal pH. The K+ efflux resulted in an increased plasma membrane potential difference, responsible for the entrance of Ca2+ and H+, the efflux of anions and the subsequent changes resulting from the increased cytoplasmic Ca2+ concentration, as well as the decreased internal pH. The Δ tok1 and Δ nha1 mutations resulted in a smaller effect of amiodarone, and Δ trk1 and Δ trk2 showed a higher increase of the plasma membrane potential. Higher concentrations of amiodarone also produced full inhibition of respiration, insensitive to uncouplers and a partial inhibition of fermentation. This phenomenon appears to be common to a large series of cationic molecules that can produce the efflux of K+, through the reduction of the negative surface charge of the cell membrane, and the concentration of this cation directly available to the monovalent cation carriers, and/or producing a disorganization of the membrane and altering the functioning of the carriers, probably not only in yeast.  相似文献   

6.
7.
In cultured cells derived from micromeres isolated at the 16-cell stage of sea urchin embryos, the activity of H+, K+-ATPase became detectable after 15 hr of culture, when the cells started to form spicules, and then increased reaching a plateau from 25 hr of culture. The Na+, K+-ATPase activity of isolated micromeres increased to a maximum at 20 hr of culture and thereafter decreased gradually. Allylisothiocyanate, an inhibitor of H+, K+-ATPase, caused a decrease in intracellular pH (pHi) accompanied by blockage of 45Ca deposition in spicule rods in spicule-forming cells at 30 hr of culture. Ouabain and amiloride had scarcely any effect on the pHi or 45, deposition. In cultured cells exposed to nifedipine, which blocked 45Ca deposition in spicule rods, allylisothiocyanate did not cause any decrease in pHi. These results show that H+, which is generated in the overall reaction to produce CaCO3 from Ca2+ and HCO3, is probably released from the cells mainly in the reaction catalyzed by H+, K+-ATPase to maintain successive production of CaCO3.  相似文献   

8.
Abstract. The effect of fusicoccin (FC) on the K+stimulated Na+ efflux in root cells of Na+ loaded barley roots was studied. FC (0.02 mM) stimulated Na+ efflux in the presence of K+ and its effect was synergistic with that of K+, in a similar way as its effect on proton extrusion. Decreasing the pH of the elution medium promoted Na+ efflux and partially replaced the effect of FC. As FC is known to increase the electrochemical proton gradient at the plasmalemma level, these results are consistent with the hypothesis that Na+ is extruded in exchange for H+. A further support to this view came from the finding that Na+ efflux was also promoted by a lipophilic cation, tributylbenzylammonium (TBBA +), which stimulates H + extrusion and is generally accepted not to enter the cells by means of the same carrier as K +.  相似文献   

9.
The H+/PPi stoichiometry of the mitochondrial H+‐PPiase from pea ( Pisum sativum L.) stem was determined by two kinetic approaches, and compared with the H+/substrate stoichiometries of the mitochondrial H+‐ATPase, and the vacuolar H+‐PPiase and H+‐ATPase. Using sub‐mitochondrial particles or preparations enriched in vacuolar membranes, the rates of substrate‐dependent H+‐transport were evaluated: by a mathematical model, describing the time‐course of H+‐gradient (ΔpH) formation; or by determining the rate of H+‐leakage following H+‐pumping inhibition by EDTA at the steady‐state ΔpH. When the H+‐transport rates were divided by those of PPi or ATP hydrolysis, measured under identical conditions, apparent stoichiometries of ca 2 were determined for the mitochondrial H+‐PPiase and H+‐ATPase, and for the vacuolar H+‐ATPase. The stoichiometry of the vacuolar H+‐PPiase was found to be ca 1. From these results, it is suggested that the mitochondrial H+‐PPiase may, in theory, function as a primary H+‐pump poised towards synthesis of PPi and, therefore, acting in parallel with the main H+‐ATPase.  相似文献   

10.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

11.
Abstract Uptake of Cd2+ into Cd-resistant cells was approximately four times lower than in Cd-sensitive cells of Saccharomyces cerevisiae . Binding of Cd2+ to the yeast cells increased during incubation of the cells in the presence of Cd2+. The increase in the binding was much higher for wild-type cells than for Cd-resistant cells. This increased binding is ascribed to permeabilization of part of the cells. There is no single relation between the relative rate of K+ efflux and the cellular Cd content as has been found previously for wild-type cells. The rates of K+ efflux were much less than those found for the wild-type cells. Only with short incubation periods of the cells with Cd2+ was the same dependence found between the efflux of K+ and the cellular Cd content for both types of cell. The discrepancies found after extended incubation of the cells with Cd2+ are ascribed to the fact that Cd-provoked K+ release proceeds via an all-or-nothing process and that K+ released from permeabilized cells can be reaccumulated in still intact cells. The latter proceeds more efficiently in Cd-resistant cells than in wild-type cells.  相似文献   

12.
The effects of NaCl and replacement of K+ by Na+ on the lipid composition of the two sugar beet inbred lines FIA and ADA were studied (a) with increasing additions of NaCl to the basal medium, and (b) with increasing replacement of K+ by Na+ at the same total concentration as in the basal medium. Direct relations were noted between NaCl concentration of the nutrient solution and the phospholipid concentration in the roots of FIA, the genotype characterized by a low K+/Na+ ratio, as well as between NaCl in the medium and the phospholipid concentration in the shoots of ADA, the genotype with a high K +/Na + ratio. The sulfolipid level in the roots of FIA was maintained at higher NaCl concentrations, while it was decreased in ADA. The glycolipid concentration in the shoots of ADA and the degree of unsaturation of the fatty acids of the total lipid fraction were decreased by salinity, indicating reduced biosynthesis of chloroplast glycolipids and/or accelerated oxidation of these lipids in the presence of NaCl.
In the Na+ for K+ replacement experiment a low content of K+ in the medium resulted in decreased levels of total lipids, phospholipids and sulfolipid in the roots of both genotypes, which did not relate to root growth. K+-leakage from the roots at low K+-level in the medium may be reduced by the increase in saturation of the lipids. In the shoots of ADA increased levels of total lipids, phospholipids and Sulfolipid were noted at a low K+-concentration of the nutrient solution.  相似文献   

13.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

14.
Puccinellia tenuiflora is a useful monocotyledonous halophyte that might be used for improving salt tolerance of cereals. This current work has shown that P. tenuiflora has stronger selectivity for K+ over Na+ allowing it to maintain significantly lower tissue Na+ and higher K+ concentration than that of wheat under short- or long-term NaCl treatments. To assess the relative contribution of Na+ efflux and influx to net Na+ accumulation, unidirectional 22Na+ fluxes in roots were carried out. It was firstly found that unidirectional 22Na+ influx into root of P. tenuiflora was significantly lower (by 31–37%) than in wheat under 100 and 150 m m NaCl. P. tenuiflora had lower unidirectional Na+ efflux than wheat; the ratio of efflux to influx was similar between the two species. Leaf secretion of P. tenuiflora was also estimated, and found the loss of Na+ content from leaves to account for only 0.0006% of the whole plant Na+ content over 33 d of NaCl treatments. Therefore, it is proposed that neither unidirectional Na+ efflux of roots nor salt secretion by leaves, but restricting unidirectional Na+ influx into roots with a strong selectivity for K+ over Na+ seems likely to contribute to the salt tolerance of P. tenuiflora .  相似文献   

15.
Embryos kept with omeprazole, a specific H+, K+-ATPase inhibitor, in a period of development between the mesenchyme blastula and the pluteus corresponding stage became abnormal plutei having quite small spicules, somewhat poor pluteus arms and apparently normal archenterons. In micro-mere-derived cells, kept with omeprazole at pH 8.2 in a period between 15 and 40 hr of culture at 20°C, omeprazole strongly inhibited spicule formation but did not block the outgrowth of pseudopodial cables, in which spicule rods were to be formed. These indicate that omeprazole probably exerts no obvious inhibitory effects other than spicule rods formation. Omeprazole-sensitive H+, K+-ATPase, an H+pump, seems to be indispensable for CaCO3 deposition (formation of spicule rod) in these spicule forming cells. H+, produced in overall reaction for CaCO3 formation: Ca2++ CO2+H2O°CaCO3+2H+, is probably released from the cells by this H+pump and hence, this reaction tends to go to CaCO3 production to form spicule rods. Omeprazole, known to become effective following its conversion to a specific inhibitor of H+, K+-ATPase at acidic pH, is able to inhibit formation of spicule rod at alkaline pH in sea water. This is probably due to an acidification of sea water near the cell surface by H+ejection in H+, K+-ATPase reaction.  相似文献   

16.
The purpose of our work was to investigate the functioning of K+ channels in protoplasts of laticifers of Hevea brasiliensis Muell. Arg., anastomosed into a network devoid of large central vacuoles, after tapping stress. Physiological functions such as proton pump activity and uptake of sucrose (a rubber precursor) were maintained, when the voltage-clamp method was used in vivo to record the whole-cell K+ current during the stress response.
A time-dependent inward current was induced in 50 m M KCl and rapidly inactivated (about 100 ms). The activation potential of this inward K+ channel was not closely dependent on Ek. This would be coherent with the 'valve model' of Schroeder and Fang (1991, Proc. Natl. Acad. Sci. USA 88: 11583–11587) involving the activation of a H+-pump accounting for the K+ uptake observed in laticiferous cells under stress. The activation half-time of outward currents was clearly voltage dependent: from about 350 to 60 ms for 125 and 155 mV, respectively. Time-dependent outward current sensitivity to 5 m M BaCl2 or CaCl2 or to 5 μ M Erythrosin B showed that the K+ channels could be Ca2+-dependent. Because of the positive values of the activation potential of the outward current, the possibility opens that an action potential exists, these cells being specialized for stress response.  相似文献   

17.
A low fluence of ultraviolet radiation (UV) causes cultured cells of Rosa damascena Mill cv. Gloire de Guilan to lose intracellular K+. This effect required the presence of Ca2+ in the medium. A reduction in the concentration of free Ca2+ to 10−5 M with ethyleneglycol-bis-(β-aminoethyl-ether)-N.N.N',N'-tetraacetic acid (EGTA) buffer inhibited the UV-stimulated efflux; this was correlated with a discharge of the membrane potential and a stimulation of the leakage of K+ from unirradiated cells. All the same effects were seen with La3+ at 0.2 m M. At 0.02 m M La3+, the UV-stimulated efflux of K+ was blocked without concomitant effects on the membrane potential or K+ efflux from control cells. It is suggested that removal of Ca2+ blocks or masks the UV-induced leakage of K+ by destabilizing the plasma membrane. In addition, La3+ may specifically inhibit the UV-stimulated opening of K+ or anion channels.  相似文献   

18.
Abstract: We have previously reported that insulin/insulin-like growth factor (IGF)-I induced the α1 isoform of Na+,K+-ATPase in cultured astrocytes. In this study the effects of insulin/IGF-I on Na+,K+-ATPase activity and cell proliferation were examined in astrocytes cultured under the various conditions, to test the possible involvement of the enzyme activity in the mitogenic action of IGF-I on astrocytes. Insulin increased Na+,K+-ATPase activity and stimulated cell proliferation in subconfluent astrocytes (cultured for 7–14 days in vitro). In contrast, these effects were not observed in confluent cells (cultured for 28 days). Furthermore, insulin stimulated neither the enzyme activity nor [3H]thymidine incorporation in astrocytes preincubated in fetal calf serum-free medium for 2 days (quiescent cells) and treated with dibutyryl cyclic AMP (differentiated cells). The increases in Na+,K+-ATPase activity and expression of the α1 mRNA preceded the mitogenic effect. 125I-IGF-I binding experiment showed that all the cells used here had similar binding characteristics. The insulin-induced increase in enzyme activity was not affected by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7), and it was observed even in Ca2+-free medium. The stimulation by IGF-I of [3H]thymidine incorporation was attenuated by ouabain and a low external K+ level. These findings suggest that stimulation of Na+,K+-ATPase activity is involved in the mitogenic action of IGF-I on cultured astrocytes.  相似文献   

19.
The activity of the H+-pyrophosphatase (H+-PPase) was characterized in microsomes from 24-h-old radish ( Raphanus sativus L., ev. Tondo Rosso Quarantino) seedlings, which are virtually devoid of the tonoplast H+-ATPase. The H+-PPase was localized to membranes which roughly comigrated with the plasma membrane in a sucrose density gradient, but clearly separated from plasma membrane when microsomes were partitioned in an aqueous dextran-polyethylene glycol two-phase system. The H+-PPase activity was strictly dependent on Mg2+ and on the presence of a monovalent cation (K+=Rb+=NH3+Cs+≫Na+Li+) and was insensitive to anions such as Cl−, Br−, NO3− and SO42-. It was inhibited by F−, imidodiphosphate and Ca2+. It had a pH optimum between pH 7.5 and 8.5 and was saturated by low concentrations of pyrophosphate (half saturation at 30 μ M pyrophosphate). All of these characteristics are identical to those reported for the tonoplast H+-PPase from various plant materials. The functional molecular weight of the H+-PPase, measured with the radiation-inactivation technique was 96 kDa.  相似文献   

20.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号