首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Clemens  E J Kim  D Neumann    J I Schroeder 《The EMBO journal》1999,18(12):3325-3333
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with no similarity to proteins of known function. We identified homologs of this new gene family from Arabidopsis thaliana, Schizosaccharomyces pombe, and interestingly also Caenorhabditis elegans. The Arabidopsis and S.pombe genes were also demonstrated to confer substantial increases in metal tolerance in yeast. PCS-expressing cells accumulate more Cd2+ than controls. PCS expression mediates Cd2+ tolerance even in yeast mutants that are either deficient in vacuolar acidification or impaired in vacuolar biogenesis. PCS-induced metal resistance is lost upon exposure to an inhibitor of glutathione biosynthesis, a process necessary for phytochelatin formation. Schizosaccharomyces pombe cells disrupted in the PCS gene exhibit hypersensitivity to Cd2+ and Cu2+ and are unable to synthesize phytochelatins upon Cd2+ exposure as determined by HPLC analysis. Saccharomyces cerevisiae cells expressing PCS produce phytochelatins. Moreover, the recombinant purified S.pombe PCS protein displays phytochelatin synthase activity. These data demonstrate that PCS genes encode phytochelatin synthases and mediate metal detoxification in eukaryotes.  相似文献   

2.
3.
The LYS7 gene in Saccharomyces cerevisiae encodes a protein (yCCS) that delivers copper to the active site of copper-zinc superoxide dismutase (CuZn-SOD, a product of the SOD1 gene). In yeast lacking Lys7 (lys7Delta), the SOD1 polypeptide is present but inactive. Mutants lacking the SOD1 polypeptide (sod1Delta) and lys7Delta yeast show very similar phenotypes, namely poor growth in air and aerobic auxotrophies for lysine and methionine. Here, we demonstrate certain phenotypic differences between these strains: 1) lys7Delta cells are slightly less sensitive to paraquat than sod1Delta cells, 2) EPR-detectable or "free" iron is dramatically elevated in sod1Delta mutants but not in lys7Delta yeast, and 3) although sod1Delta mutants show increased sensitivity to extracellular zinc, the lys7Delta strain is as resistant as wild type. To restore the SOD catalytic activity but not the zinc-binding capability of the SOD1 polypeptide, we overexpressed Mn-SOD from Bacillus stearothermophilus in the cytoplasm of sod1Delta yeast. Paraquat resistance was restored to wild-type levels, but zinc was not. Conversely, expression of a mutant CuZn-SOD that binds zinc but has no SOD activity (H46C) restored zinc resistance but not paraquat resistance. Taken together, these results strongly suggest that CuZn-SOD, in addition to its antioxidant properties, plays a role in zinc homeostasis.  相似文献   

4.
5.
6.
Saccharomyces cerevisiae cells possess an alkali metal cation antiporter encoded by the NHA1 gene. Nha1p is unique in the family of yeast Na+/H+ antiporters on account of its broad substrate specificity (Na+, Li+, K+) and its long C-terminus (56% of the whole protein). In order to study the role of the C-terminus in Nha1p function, we constructed a series of 13 truncated NHA1 versions ranging from the complete one (2958 nucleotides, 985 amino acids) down to the shortest version (1416 nucleotides, 472 amino acids), with only 41 amino acid residues after the last putative transmembrane domain. Truncated NHA1 versions were expressed in an S. cerevisiae alkali metal cation-sensitive strain (B31; ena1-4Delta nha1Delta). We found that the entire Nha1p C-terminus domain is not necessary for either the proper localization of the antiporter in the plasma membrane or the transport of all four substrates (we identified rubidium as the fourth Nha1p substrate). Partial truncation of the C-terminus of about 70 terminal amino acids improves the tolerance of cells to Na+, Li+ and Rb+ compared with cells expressing the complete Nha1p. The presence of the neighbouring part of the C-terminus (amino acids 883-928), rich in aspartate and glutamate residues, is necessary for the maintenance of maximum Nha1p activity towards sodium and lithium. In the case of potassium, the participation of the long C-terminus in the regulation of intracellular potassium content is demonstrated. We also present evidence that the Nha1p C-terminus is involved in the cell response to sudden changes in environmental osmolarity.  相似文献   

7.
Bessler JB  Zakian VA 《Genetics》2004,168(3):1205-1218
The Pif1 family of DNA helicases is conserved from yeast to humans. Although the helicase domains of family members are well conserved, the amino termini of these proteins are not. The Saccharomyces cerevisiae genome encodes two Pif1 family members, Rrm3p and Pif1p, that have very different functions. To determine if the amino terminus of Rrm3p contributes to its role in promoting fork progression at >1000 discrete chromosomal sites, we constructed a deletion series that lacked portions of the 249-amino-acid amino terminus. The phenotypes of cells expressing alleles that lacked all or most of the amino terminus were indistinguishable from those of rrm3Delta cells. Rrm3p deletion derivatives that lacked smaller portions of the amino terminus were also defective, but the extent of replication pausing at tRNA genes, telomeres, and ribosomal DNA (rDNA) was not as great as in rrm3Delta cells. Deleting only 62 amino acids from the middle of the amino terminus affected only rDNA replication, suggesting that the amino terminus can confer locus-specific effects. Cells expressing a fusion protein consisting of the Rrm3p amino terminus and the Pif1p helicase domain displayed defects similar to rrm3Delta cells. These data demonstrate that the amino terminus of Rrm3p is essential for Rrm3p function. However, the helicase domain of Rrm3p also contributes to its functional specificity.  相似文献   

8.
Oxygen toxicity in Saccharomyces cerevisiae lacking the copper/zinc superoxide dismutase (SOD1) can be suppressed by overexpression of the S. cerevisiae ATX2 gene. Multiple copies of ATX2 were found to reverse the aerobic auxotrophies of sod1(delta) mutants for lysine and methionine and also to enhance the resistance of these yeast strains to paraquat and atmospheric levels of oxygen. ATX2 encodes a novel 34.4-kDa polypeptide with a number of potential membrane-spanning domains. Our studies indicate that Atx2p localizes to the membrane of a vesicular compartment in yeast cells reminiscent of the Golgi apparatus. With indirect immunofluorescence microscopy, Atx2p exhibited a punctate pattern of staining typical of the Golgi apparatus, and upon subcellular fractionation, Atx2p colocalized with a biochemical marker for the yeast Golgi apparatus. We demonstrate here that this vesicle protein normally functions in the homeostasis of manganese ions and that this role in metal metabolism is necessary for the ATX1 suppression of SOD1 deficiency. First, overexpression of ATX2 caused cells to accumulate increased levels of manganese. Second, a deletion in ATX2 caused a decrease in the apparent available level of intracellular manganese and caused sod1(delta) mutants to become dependent upon exogenous manganese for aerobic growth. Third, ATX2 was incapable of suppressing oxidative damage in cells depleted of manganese ions or lacking the plasma membrane transporter for manganese. The effect of ATX2 overexpression on manganese accumulation and oxygen resistance is similar to what we have previously reported for mutations in PMR1, which encodes a manganese-trafficking protein that also resides in a vesicular compartment. Our studies are consistent with a model in which Atx2p and Pmr1p work in opposite directions to control manganese homeostasis.  相似文献   

9.
10.
Eukaryotes express both copper/zinc (SOD1)- and manganese (SOD2)-requiring superoxide dismutase enzymes that guard against oxidative damage. Although SOD1 acquires its copper through a specific copper trafficking pathway, nothing is known regarding the intracellular manganese trafficking pathway for SOD2. We demonstrate here that in Saccharomyces cerevisiae cells delivery of manganese to SOD2 in the mitochondria requires the Nramp metal transporter, Smf2p. SOD2 activity is greatly diminished in smf2Delta mutants, even though the mature SOD2 polypeptide accumulates to normal levels in mitochondria. Treating smf2Delta cells with manganese supplements corrected the SOD2 defect, as did elevating intracellular manganese through mutations in PMR1. Hence, manganese appears to be inaccessible to mitochondrial SOD2 in smf2 mutants. Cells lacking SMF2 also exhibited defects in manganese-dependent steps in protein glycosylation and showed an overall decrease in steady-state levels of accumulated manganese. By comparison, mutations in the cell surface Nramp transporter, Smf1p, had very little impact on manganese accumulation and trafficking. Smf2p resides in intracellular vesicles and shows no evidence of plasma membrane localization, even in an end4 mutant blocked for endocytosis. We propose a model in which Smf2p-containing vesicles play a central role in manganese trafficking to the mitochondria and other cellular sites as well.  相似文献   

11.
12.
Protein O-glycosylation is an essential protein modification in eukaryotic cells. In Saccharomyces cerevisiae, O-mannosylation is initiated in the lumen of the endoplasmic reticulum by O-mannosyltransferase gene products (Pmt1p-7p). A search of the Schizosaccharomyces pombe genome database revealed a total of three O-glycoside mannosyltransferase homologs (ogm1+, ogm2+, and ogm4+), closely related to Saccharomyces cerevisiae PMT1, PMT2, and PMT4. Although individual ogm genes were not found to be essential, ogm1Delta and ogm4Delta mutants exhibited aberrant morphology and failed to agglutinate during mating. The phenotypes of the ogm4Delta mutant were not complemented by overexpression of ogm1+ or ogm2+, suggesting that each of the Ogm proteins does not have overlapping functions. Heterologous expression of a chitinase from S. cerevisiae in the ogm mutants revealed that O-glycosylation of chitinase had decreased in ogm1Delta cells. A GFP-tagged Fus1p from S. cerevisiae was specifically not glycosylated and accumulated in the Golgi in ogm4Delta cells. These results indicate that O-glycosylation initiated by Ogm proteins plays crucial physiological roles and can serve as a sorting determinant for protein transport of membrane glycoproteins in S. pombe.  相似文献   

13.
14.
P1B‐ATPases are among the most common resistance factors to metal‐induced stress. Belonging to the superfamily of P‐type ATPases, they are capable of exporting transition metal ions at the expense of adenosine triphosphate (ATP) hydrolysis. P1B‐ATPases share a conserved structure of three cytoplasmic domains linked by a transmembrane domain. In addition, they possess a unique class of domains located at the N‐terminus. In bacteria, these domains are primarily associated with metal binding and either occur individually or as serial copies of each other. Within this study, the roles of the two adjacent metal‐binding domains (MBDs) of CopA, the copper export ATPase of Escherichia coli were investigated. From biochemical and physiological data, we deciphered the protein‐internal pathway of copper and demonstrate the distal N‐terminal MBD to possess a function analogous to the metallochaperones of related prokaryotic copper resistance systems, that is its involvement in the copper transfer to the membrane‐integral ion‐binding sites of CopA. In contrast, the proximal domain MBD2 has a regulatory role by suppressing the catalytic activity of CopA in absence of copper. Furthermore, we propose a general functional divergence of tandem MBDs in P1B‐ATPases, which is governed by the length of the inter‐domain linker.  相似文献   

15.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

16.
17.
It has been shown previously that heterologous expression of inwardly rectifying potassium channels (K+-channels) from plants and mammals in K+-transport defective yeast mutants can restore the ability of growth in media with low [K+]. In this study, the functional expression of an outward rectifying mammalian K+-channel in yeast is presented for the first time. The outward-rectifying mammalian neuronal K+-channel rat ether à go-go channel 1 (rEAG1, Kv 10.1) was expressed in yeast (Saccharomyces cerevisiae) strains lacking the endogenous K+-uptake systems and/or alkali-metal-cation efflux systems. It was found that a truncated channel version, lacking almost the complete intracellular N-terminus (rEAG1 Delta 190) but not the full-length rEAG1, partially complemented the growth defect of K+-uptake mutant cells (trk1,2 Delta tok1 Delta) in media containing low K+ concentrations. The expression of rEAG1 Delta 190 in a strain lacking the cation efflux systems (nha1 Delta ena1-4 Delta) increased the sensitivity to high monovalent cation concentrations. Both phenotypes were observed, when rEAG1 Delta 190 was expressed in a trk1,2 Delta and nha1, ena1-4 Delta mutant strain. In the presence of K+-channel blockers (Cs+, Ba2+ and quinidine), the growth advantage of rEAG1 Delta 190 expressing trk1,2 tok1 Delta cells disappeared, indicating its dependence on functional rEAG1 channels. The results demonstrate that S. cerevisiae is a suitable expression system even for voltage-gated outward-rectifying mammalian K+-channels.  相似文献   

18.
Multiple regulatory domains on the Byr2 protein kinase.   总被引:9,自引:3,他引:6       下载免费PDF全文
Byr2 protein kinase, a homolog of mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK) and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccharomyces pombe. Byr2 functions downstream of Ste4, Ras1, and the membrane-associated receptor-coupled heterotrimeric G-protein alpha subunit, Gpa1. Byr2 has a distinctive N-terminal kinase regulatory domain and a characteristic C-terminal kinase catalytic domain. Ste4 and Ras1 interact with the regulatory domain of Byr2 directly. Here, we define the domains of Byr2 that bind Ste4 and Ras1 and show that the Byr2 regulatory domain binds to the catalytic domain in the two-hybrid system. Using Byr2 mutants, we demonstrate that these direct physical interactions are all required for proper signaling. In particular, the physical association between Byr2 regulatory and catalytic domains appears to result in autoinhibition, the loss of which results in kinase activation. Furthermore, we provide evidence that Shk1, the S. pombe homolog of the STE20 protein kinase, can directly antagonize the Byr2 intramolecular interaction, possibly by phosphorylating Byr2.  相似文献   

19.
Tatebayashi K  Tani T  Ikeda H 《Genetics》2001,157(4):1513-1522
We have cloned and characterized the Schizosaccharomyces pombe gene mog1(+), which encodes a protein with homology to the Saccharomyces cerevisiae Mog1p participating in the Ran-GTPase system. The S. pombe Mog1p is predominantly localized in the nucleus. In contrast to the S. cerevisiae MOG1 gene, the S. pombe mog1(+) gene is essential for cell viability. mog1(+) is required for the mitosis-to-interphase transition, as the mog1-1 mutant arrests at restrictive temperatures as septated, binucleated cells with highly condensed chromosomes and an aberrant nuclear envelope. FACS analysis showed that these cells do not undergo a subsequent round of DNA replication. Surprisingly, also unlike the Delta mog1 mutation in S. cerevisiae, the mog1-1 mutation causes nucleolar accumulation of poly(A)(+) RNA at the restrictive temperature in S. pombe, but the signals do not overlap with the fibrillarin-rich region of the nucleolus. Thus, we found that mog1(+) is required for the mitosis-to-interphase transition and a class of RNA metabolism. In our attempt to identify suppressors of mog1-1, we isolated the spi1(+) gene, which encodes the fission yeast homologue of Ran. We found that overexpression of Spi1p rescues the S. pombe Delta mog1 cells from death. On the basis of these results, we conclude that mog1(+) is involved in the Ran-GTPase system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号