首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A psychrotrophic bacterium, originally isolated from a natural aquatic environment, was characterized and identified as Pseudomonas putida Q5 for use as a representative recipient for biodegradative genes from a mesophilic microorganism. The TOL plasmid pWWO of the mesophile P. putida PaW1 was successfully transferred by conjugation to the naturally isolated psychrotroph P. putida Q5, as shown by plasmid analysis by agarose gel electrophoresis. Expression of the genes encoded by the mesophilic TOL plasmid in the psychrotroph was shown by the fact that the transconjugant (designated P. putida Q5T) had the capacity to degrade and utilize toluate (1,000 mg/liter) as a sole source of carbon at temperatures as low as 0 degrees C. Comparison of growth rates over a wide temperature range (0 to 30 degrees C) indicated that the physiological activity of the transconjugant was not reduced and that the plasmid DNA from the mesophile and its encoded enzymes functioned effectively in the psychrotroph at temperatures well below those at which the mesophile could grow. The production and demonstrated functioning of P. putida Q5T illustrates the possibility of developing specific degradative capacities in bacteria which can readily function at low temperatures in chemically contaminated environments or in industrial wastewater treatment systems.  相似文献   

2.
A psychrotrophic bacterium, originally isolated from a natural aquatic environment, was characterized and identified as Pseudomonas putida Q5 for use as a representative recipient for biodegradative genes from a mesophilic microorganism. The TOL plasmid pWWO of the mesophile P. putida PaW1 was successfully transferred by conjugation to the naturally isolated psychrotroph P. putida Q5, as shown by plasmid analysis by agarose gel electrophoresis. Expression of the genes encoded by the mesophilic TOL plasmid in the psychrotroph was shown by the fact that the transconjugant (designated P. putida Q5T) had the capacity to degrade and utilize toluate (1,000 mg/liter) as a sole source of carbon at temperatures as low as 0 degrees C. Comparison of growth rates over a wide temperature range (0 to 30 degrees C) indicated that the physiological activity of the transconjugant was not reduced and that the plasmid DNA from the mesophile and its encoded enzymes functioned effectively in the psychrotroph at temperatures well below those at which the mesophile could grow. The production and demonstrated functioning of P. putida Q5T illustrates the possibility of developing specific degradative capacities in bacteria which can readily function at low temperatures in chemically contaminated environments or in industrial wastewater treatment systems.  相似文献   

3.
Klebsiella pneumoniae M5a1 is capable of utilizing 3-hydroxybenzoate via gentisate, and the 6.3-kb gene cluster mhbRTDHIM conferred the ability to grow on 3-hydroxybenzoate to Escherichia coli and Pseudomonas putida PaW340. Four of the six genes (mhbDHIM) encode enzymes converting 3-hydroxybenzoate to pyruvate and fumarate via gentisate. MhbR is a gene activator, and MhbT is a hypothetical protein belonging to the transporter of the aromatic acid/H(+) symporter family. Since a transporter for 3-hydrxybenzoate uptake has not been characterized to date, we investigated whether MhbT is responsible for the uptake of 3-hydroxybenzoate, its metabolic intermediate gentisate, or both. The MhbT-green fluorescent protein (GFP) fusion protein was located on the cytoplasmic membrane. P. putida PaW340 containing mhbRΔTDHIM could not grow on 3-hydroxybenzoate; however, supplying mhbT in trans allowed the bacterium to grow on the substrate. K. pneumoniae M5a1 and P. putida PaW340 containing recombinant MhbT transported (14)C-labeled 3-hydroxybenzoate but not (14)C-labeled gentisate and benzoate into the cells. Site-directed mutagenesis of two conserved amino acid residues (Asp-82 and Asp-314) and a less-conserved residue (Val-311) among the members of the symporter family in the hydrophilic cytoplasmic loops resulted in the loss of 3-hydroxybenzoate uptake by P. putida PaW340 carrying the mutant proteins. Hence, we demonstrated that MhbT is a specific 3-hydroxybenzoate transporter.  相似文献   

4.
During growth on benzoate-minimal medium Pseudomonas putida mt-2 (PaW1) segregates derivative ('cured') strains which have lost the ability to use the pathway encoded by its resident catabolic plasmid pWW0. Experiments with two plasmids identical to pWW0 but each with an insert of Tn401, which confers resistance to carbenicillin, suggested that the 'benzoate curing' occurs far more frequently by the specific deletion of the 39 kbp region carrying the catabolic genes than by total plasmid loss. This effect was not pH-dependent, and was not produced during growth on other weak organic acids, such as succinate or propionate, or when benzoate was present in the medium with an alternative, preferentially used carbon source such as succinate. Growth on benzoate did not cause loss from strain PaW174 of the plasmid pWW0174, a derivative of pWW0 which has deleted the 39 kbp region but carries Tn401. Similarly the naphthalene-catabolic plasmid pWW60-1, of the same incompatibility group as pWW0, was not lost from PaW701 during growth on benzoate. Competition between wild-type PaW1 and PaW174, which has the 'cured' phenotype, showed that the latter has a distinct growth advantage on benzoate over the wild-type even when initially present as only 1% of the population: when PaW174 was seeded at lower cell ratios, spontaneously 'cured' derivatives of PaW1 took over the culture after 60-80 generations, indicating that they are present in PaW1 cultures at frequencies between 10(-2) and 10(-3). We conclude that the progressive takeover of populations of PaW1 only occurs when benzoate is present as the sole growth source and that neither benzoate, nor other weak acids, affect plasmid segregation or deletion events: a sufficient explanation is that the 'cured' segregants grow faster than the wild-type using the chromosomally determined beta-ketoadipate pathway.  相似文献   

5.
The bioremediation of polluted groundwater and toxic waste sites requires that bacteria come into close physical contact with pollutants. This can be accomplished by chemotaxis. Five motile strains of bacteria that use five different pathways to degrade toluene were tested for their ability to detect and swim towards this pollutant. Three of the five strains (Pseudomonas putida F1, Ralstonia pickettii PKO1, and Burkholderia cepacia G4) were attracted to toluene. In each case, the response was dependent on induction by growth with toluene. Pseudomonas mendocina KR1 and P. putida PaW15 did not show a convincing response. The chemotactic responses of P. putida F1 to a variety of toxic aromatic hydrocarbons and chlorinated aliphatic compounds were examined. Compounds that are growth substrates for P. putida F1, including benzene and ethylbenzene, were chemoattractants. P. putida F1 was also attracted to trichloroethylene (TCE), which is not a growth substrate but is dechlorinated and detoxified by P. putida F1. Mutant strains of P. putida F1 that do not oxidize toluene were attracted to toluene, indicating that toluene itself and not a metabolite was the compound detected. The two-component response regulator pair TodS and TodT, which control expression of the toluene degradation genes in P. putida F1, were required for the response. This demonstration that soil bacteria can sense and swim towards the toxic compounds toluene, benzene, TCE, and related chemicals suggests that the introduction of chemotactic bacteria into selected polluted sites may accelerate bioremediation processes.  相似文献   

6.
The regulated meta pathway operon for the catabolism of salicylate on the naphthalene plasmid pWW60-22 was cloned into the broad-host-range vector pKT230 on a 17.5 kbp BamHI fragment. The recombinant plasmid conferred the ability to grow on salicylate when mobilized into plasmid-free Pseudomonas putida PaW130. A detailed restriction map of the insert was derived and the locations of some of the genes were determined by subcloning and assaying for their gene products in Escherichia coli and P. putida hosts. The existence of a regulatory gene was demonstrated by the induction of enzyme activities in the presence of salicylate. DNA-DNA hybridization indicated a high degree of structural homology between the pWW60-22 operon and the analogous meta pathway operon on TOL plasmid pWW53-4. The data are consistent with the structural genes being arranged in an identical linear array and suggest an evolutionary link between the two catabolic systems.  相似文献   

7.
Long-term cultivation of the Pseudomonas putida multiplasmid strain EST1020 on phenol resulted in the formation of individual PHE plasmids determining phenol degradation. Four types of PHE plasmids, pEST1024, pEST1026, pEST1028, and pEST1029, are characterized. They all contain a transferrable replicon similar to pWWO-8 with a partly duplicated DNA sequence of the 17-kb transposable element of this plasmid and include various amounts of DNA that carry genes encoding phenol degradation (phe genes). We cloned the genes determining phenol monooxygenase and catechol 1,2-dioxygenase from the Pseudomonas sp. parent strain plasmid DNA into the broad host range vector pAYC32 and studied the expression of the cloned DNA. The formation of a new hybrid metabolic plasmid, pEST1354, was demonstrated in P. putida PaW85 as the result of transposition of the 17-kb genetic element from the chromosome of PaW85 into the plasmid carrying cloned phe genes. The target site for the 17-kb transposon was localized in the vector DNA, just near the cloning site. In subcloning experiments we found two regions in the 17-kb DNA stretch that are involved in the expression of the cloned phe genes.  相似文献   

8.
The activities of the TOL plasmid-coded xylene oxygenase, benzylalcohol dehydrogenase, benzaldehyde dehydrogenase of Pseudomonas putida strain PaW1 were tested with substituted toluenes, benzylalcohols and benzaldehydes, respectively, as substrates. Several chlorinated toluenes were shown to induce enzymes of the xylene degradation sequence. Conjugative transfer of the TOL plasmid from Pseudomonas putida strain PaW1 to Pseudomonas sp. strain B13 and Pseudomonas cepacia strain JH230 allowed the isolation of hybrid strains capable of growing in the presence of 3-chloro-, 4-chloro- and 3,5-dichlorotoluene. Hybrid strains revealed new ways to prevent the dead-end meta-pathway for cholorocatechols.  相似文献   

9.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

10.
It was shown that two different enzymes of aromatic ring oxidative meta-cleavage (2,3-dihydroxybiphenyl-1,2-dioxygenase), DBO and catechol-2,3-dioxygenase, C230) function in Pseudomonas strains with a plasmid and chromosomal genetic control of biphenyl and toluate catabolism. A comparative analysis of DBO's and C230's expressed by the pBS241 biphenyl degradative plasmid in P. putida BS893, pBS311 in P. putida U83, chromosomal genes in P. putida BF and C230 from P. putida PaW160 (pWWO) was carried out. It was found that the DBO's of all strains under study are highly specialized enzymes in respect of 2,3-dihydroxybiphenyl cleavage and are also able to cleave 3-methyl-catechol and catechol (but not 4-methylcatechol) at low rates. In contrast with DBO's, in Pseudomonas strains the substrate specificities of all C230's are variable. The C230's expressed by the D-plasmids pBS241 and pBC311 have a moderate affinity for catechol, 3-methyl- and 4-methylcatechol, but are unable to cleave 2,3-dihydroxybiphenyl. The C230 which is encoded by the chromosomal structure gene from P. putida BF is very similar to C230 which codes for the TOL-plasmid pWWO. These plasmid differ from C230's expressed by biphenyl D-plasmids due to their capability to cleave 2,3-dihydroxybiphenyl in addition to catechol cleavage. All DBO's and C230's under study possess a number of properties that are typical for the enzymes having an oxidative meta-cleaving effect. The different roles of these enzymes in biphenyl and toluate catabolism in Pseudomonas strains are discussed.  相似文献   

11.
Pseudomonas putida MT53 contains a TOL plasmid, pWW53, that encodes toluene-xylene catabolism. pWW53 is nonconjugative, is about 105 to 110 kilobase pairs (kbp) in size, and differs significantly in its restriction endonuclease digestion pattern and incompatibility group from the archetypal TOL plasmid pWW0. An RP4::pWW53 cointegrate plasmid, pWW53-4, containing about 35 kbp of pWW53 DNA, including the entire catabolic pathway genes, was formed, and a restriction map for KpnI, HindIII, and BamHI was derived. The entire regulated meta pathway genes for the catabolism of m-toluate were cloned into pKT230 from pWW53 on a 17.5-kbp HindIII fragment. The recombinant plasmid supported growth on m-toluate when mobilized into plasmid-free P. putida PaW130. A restriction map of the insert for 10 restriction enzymes was derived, and the locations of xylD, xylL, xylE, xylG, and xylF were determined by subcloning and assaying for their gene products in both Escherichia coli and P. putida hosts. Good induction of the enzymes by m-toluate and m-methylbenzyl alcohol but not by m-xylene was measured in P. putida, but little or no regulation was found in E. coli. The restriction map and the gene order showed strong similarities with published maps of the DNA encoding both the entire meta pathway operon (xylDLEGFJIH) and the regulatory genes xylS and xylR on the archetype TOL plasmid pWW0, suggesting a high degree of conservation in DNA structure for the catabolic operon on the two different plasmids.  相似文献   

12.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

13.
The attachment of motile and non-motile strains of Pseudomonas putida PaW8 to sterile wheat roots was assessed in both non-competitive and intra-specific competitive assays. The motile strain showed significantly greater attachment to wheat roots than non-motile strains in phosphate buffer. Overall, the motile strain attached better than the non-motile strain at 10(6), 10(7) and 10(8) cfu ml(-1) in competitive assays and at 10(6) and 10(7) cfu ml(-1) in non-competitive assays. When attachment was studied in Luria broth no significant difference between motile and non-motile strains was detected. P. putida PaW8 cells marked with the luxAB genes were used to compare direct detection of attached cells by luminometry with indirect detection by dilution plate counts following extraction from root material. Although direct detection permitted a rapid assessment (60 s) of attachment to surfaces, dilution plate counts provided a more sensitive method for quantification of bacteria. The detection limits were approximately 10 cfu root(-1) using dilution plate counts compared with 1000 cfu root(-1) using luminometry. All results highlighted the importance of motility for the attachment of P. putida to plant roots in simple model systems. To take this work further, studies to assess the role of motility using complex non-sterile systems are needed.  相似文献   

14.
Pseudomonas putida strain PP3 produces two hydrolytic dehalogenases encoded by dehI and dehII, which are members of different deh gene families. The 9.74-kb DEH transposon containing dehI and its cognate regulatory gene, dehR(I), was isolated from strain PP3 by using the TOL plasmid pWW0. DEH was fully sequenced and shown to have a composite transposon structure, within which dehI and dehR(I) were divergently transcribed and were flanked on either side by 3.73-kb identical direct repeats. The flanking repeat unit, designated ISPpu12, had the structure of an insertion sequence in that it was bordered by 24-bp near-perfect inverted repeats and contained four open reading frames (ORFs), one of which was identified as tnpA, putatively encoding an ISL3 family transposase. A putative lipoprotein signal peptidase was encoded by an adjacent ORF, lspA, and the others, ISPpu12 orf1 and orf2, were tentatively identified as a truncated cation efflux transporter gene and a PbrR family regulator gene, respectively. The orf1-orf2 intergenic region contained an exact match with a previously described active, outward-orientated promoter, Pout. Transposition of DEH-ISPpu12 was investigated by cloning the whole transposon into a suicide plasmid donor, pAWT34, and transferring the construct to various recipients. In this way DEH-ISPpu12 was shown to transpose in a broad range of Proteobacteria. Transposition of ISPpu12 independently from DEH, and inverse transposition, whereby the vector DNA and ISPpu12 inserted into the target genome without the deh genes, were also observed to occur at high frequencies in P. putida PaW340. Transposition of a second DEH-ISPpu12 derivative introduced exogenously into P. putida PP3 via the suicide donor pAWT50 resulted in silencing of resident dehI and dehII genes in about 10% of transposition transconjugants and provided a genetic link between transposition of ISPpu12 and dehalogenase gene silencing. Database searches identified ISPpu12-related sequences in several bacterial species, predominantly associated with plasmids and xenobiotic degradative genes. The potential role of ISPpu12 in gene silencing and activation, as well as the adaptation of bacteria to degrade xenobiotic compounds, is discussed.  相似文献   

15.
A A Miaé  A L Khe?naru 《Genetika》1991,27(3):389-398
Camphor degradative plasmids (CAM, pRK1) are preferentially situated on chromosomes of Pseudomonas putida strains PaW. After having been transferred into Cam+ strains, the TOL plasmid pWWO dissociates into the cryptic plasmid pWWO-8 and chromosome-borne transposon Tn4651. The opposite situation, i.e. reconstruction of the TOL plasmid pWWO from the cryptic plasmid pWWO-8 and chromosome-borne catabolic operons of the pWWO plasmid has been described. Cam- derivatives of the CAM plasmid were obtained in vivo which contain the TOL plasmid transposons Tn4651 or Tn4652 as obligatory structural elements. These plasmids as well as pWWO-8 determine conjugational mobilization of chromosome-located cam operons followed by their integration into the chromosome of recipient.  相似文献   

16.
The recombinant Pseudomonas putida strain CB1-9, which acquired the ability to grow on chlorobenzenes, contains a 33-kilobase (kb) plasmid (pKFL3) which lacked homology to an indigenous 15-kb plasmid (pKFL1) in Pseudomonas alcaligenes C-0 parent but was homologous to a 55-kb plasmid (pKFL2) from the P. putida R5-3 parent. Chromosomal DNA of P. alcaligenes C-0 hybridized to probes prepared from pKFL3 but not to probes prepared from pKFL2. A single clone from a genomic library of P. alcaligenes C-0 hybridized to EcoRI-digested pKFL3. Southern blot hybridization with the insert DNA from that clone identified homology with specific restriction enzyme fragments in pKFL3. The ability of the recombinant to utilize 3-chlorobenzoate, chlorobenzene, and 1,4-dichlorobenzene as well as its loss of utilization of xylenes and methylbenzoates appears to be associated with the transfer and integration of chromosomal DNA from P. alcaligenes into a Tol-like plasmid of P. putida R5-3.  相似文献   

17.
The recombinant Pseudomonas putida strain CB1-9, which acquired the ability to grow on chlorobenzenes, contains a 33-kilobase (kb) plasmid (pKFL3) which lacked homology to an indigenous 15-kb plasmid (pKFL1) in Pseudomonas alcaligenes C-0 parent but was homologous to a 55-kb plasmid (pKFL2) from the P. putida R5-3 parent. Chromosomal DNA of P. alcaligenes C-0 hybridized to probes prepared from pKFL3 but not to probes prepared from pKFL2. A single clone from a genomic library of P. alcaligenes C-0 hybridized to EcoRI-digested pKFL3. Southern blot hybridization with the insert DNA from that clone identified homology with specific restriction enzyme fragments in pKFL3. The ability of the recombinant to utilize 3-chlorobenzoate, chlorobenzene, and 1,4-dichlorobenzene as well as its loss of utilization of xylenes and methylbenzoates appears to be associated with the transfer and integration of chromosomal DNA from P. alcaligenes into a Tol-like plasmid of P. putida R5-3.  相似文献   

18.
The utilization of phenol, m-toluate, and salicylate (Phe+, mTol+, and Sal+ characters, respectively) in Pseudomonas sp. strain EST1001 is determined by the coordinated expression of genes placed in different plasmids, i.e., by a multiplasmid system. The natural multiplasmid strain EST1001 is phenotypically unstable. In its Phe-, mTol-, and Sal- segregants, the plasmid DNA underwent structural rearrangements without a marked loss of plasmid DNA, and the majority of segregants gave revertants. The genes specifying the degradation of phenol and m-toluate were transferable to P. putida PaW340, and in this strain a new multiplasmid system with definite structural changes was formed. The 17-kilobase transposable element, a part of the TOL plasmid pWWO present in the chromosome of PaW340, was inserted into the plasmid DNA in transconjugants. In addition, transconjugant EST1020 shared pWWO-like structures. Enzyme assays demonstrated that ortho-fission reactions were used by bacteria that grew on phenol, whereas m-toluate was catabolized by a meta-fission reaction. Salicylate was a functional inducer of the enzymes of both pathways. The expression of silent metabolic pathways of phenol or m-toluate degradation has been observed in EST1001 Phe- mTol+ and Phe+ mTol- transconjugants. The switchover of phenol degradation from the ortho- to the meta-pathway in EST1033 also showed the flexibility of genetic material in EST1001 transconjugants.  相似文献   

19.
Pseudomonas putida PMD-1 dissimilates naphthalene (Nah), salicylate (Sal), and benzoate (Ben) via catechol which is metabolized through the meta (or alpha-keto acid) pathway. The ability to utilize salicylate but not naphthalene was transferred from P. putida PMD-1 to several Pseudomonas species. Agarose gel electrophoresis of deoxyribonucleic acid (DNA) from PMD-1 and Sal+ exconjugants indicated that a plasmid (pMWD-1) of 110 megadaltons is correlated with the Sal+ phenotype; restriction enzyme analysis of DNA from Sal+ exconjugants indicated that plasmid pMWD-1 was transmitted intact. Enzyme analysis of Sal+ exconjugants demonstrated that the enzymes required to oxidize naphthalene to salicylate are absent, but salicylate hydroxylase and enzymes of the meta pathway are present. Thus, naphthalene conversion to salicylate requires chromosomal genes, whereas salicylate degradation is plasmid encoded. Comparison of restriction digests of plasmid pMWD-1 indicated that it differs considerably from the naphthalene and salicylate degradative plasmids previously described in P. putida.  相似文献   

20.
An Arthrobacter strain, able to utilize 4-chlorobenzoic acid as the sole carbon and energy source, was isolated and characterized. The first step of the catabolic pathway was found to proceed via a hydrolytic dehalogenation that leads to the formation of 4-hydroxybenzoic acid. The dehalogenase encoding genes (fcb) were sequenced and found highly homologous to and organized as those of other 4-chlorobenzoic acid degrading Arthrobacter strains. The fcb genes were cloned and successfully expressed in the heterologous host Pseudomonas putida PaW340 and P. putida KT2442 upper TOL, which acquired the ability to grow on 4-chlorobenzoic acid and 4-chlorotoluene, respectively. The cloned dehalogenase displayed a high specificity for para-substituted haloaromatics with affinity Cl > Br > I > F, in the order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号