首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Neuroglobin, recently discovered in the brain and in the retina of vertebrates, belongs to the class of hexacoordinate globins, in which the distal histidine coordinates the iron center in both the Fe(II) and Fe(III) forms. As for most other hexacoordinate globins, the physiological function of neuroglobin is still unclear, but seems to be related to neuronal survival following acute hypoxia. In this study, we have addressed the question whether human neuroglobin could act as a scavenger of toxic species, such as nitrogen monoxide, peroxynitrite, and hydrogen peroxide, which are generated at high levels in the brain during hypoxia; we have also investigated the kinetics of the reactions of its Fe(III) (metNGB) and Fe(II)NO forms with several reagents. Binding of cyanide or NO* to metNGB follows bi-exponential kinetics, showing the existence of two different protein conformations. In the presence of excess NO*, metNGB is converted into NGBFe(II)NO by reductive nitrosylation, in analogy to the reactions of NO* with metmyoglobin and methemoglobin. The Fe(II)NO form of neuroglobin is oxidized to metNGB by peroxynitrite and dioxygen, two reactions that also take place in hemoglobin, albeit at lower rates. In contrast to myoglobin and hemoglobin, metNGB unexpectedly does not generate the cytotoxic ferryl form of the protein upon addition of either peroxynitrite or hydrogen peroxide. Taken together, our data indicate that human neuroglobin may be an efficient scavenger of reactive oxidizing species and thus may play a role in the cellular defense against oxidative stress.  相似文献   

2.
Fago A  Hundahl C  Malte H  Weber RE 《IUBMB life》2004,56(11-12):689-696
Neuroglobin and cytoglobin are two recently discovered vertebrate globins, which are expressed at low levels in neuronal tissues and in all tissues investigated so far, respectively. Based on their amino acid sequences, these globins appear to be phylogenetically ancient and to have mutated less during evolution in comparison to the other vertebrate globins, myoglobin and hemoglobin. As with some plant and bacterial globins, neuroglobin and cytoglobin hemes are hexacoordinate in the absence of external ligands, in that the heme iron atom coordinates both a proximal and a distal His residue. While the physiological role of hexacoordinate globins is still largely unclear, neuroglobin appears to participate in the cellular defence against hypoxia. We present the current knowledge on the functional properties of neuroglobin and cytoglobin, and describe a mathematical model to evaluate the role of mammalian retinal neuroglobin in supplying O2 supply to the mitochondria. As shown, the model argues against a significant such role for neuroglobin, that more likely plays a role to scavenge reactive oxygen and nitrogen species that are generated following brain hypoxia. The O2 binding properties of cytoglobin, which is upregulated upon hypoxia, are consistent with a role for this protein in O2-requiring reactions, such as those catalysed by hydroxylases.  相似文献   

3.
Two new globin proteins have recently been discovered in vertebrates, neuroglobin in neurons and cytoglobin in all tissues, both showing heme hexacoordination by the distal His(E7) in the absence of gaseous ligands. In analogy to hemoglobin and myoglobin, neuroglobin and cytoglobin are supposedly involved in O2 storage and delivery, although their physiological role remains to be solved. Here we report O2 equilibria of recombinant human neuroglobin (NGB) and cytoglobin (CYGB) measured under close to physiological conditions and at varying temperature and pH ranges. NGB shows both alkaline and acid Bohr effects (pH-dependent O2 affinity) and temperature-dependent enthalpy of oxygenation. O2 and CO binding equilibrium studies on neuroglobin mutants strongly suggest that the bound O2 is stabilized by interactions with His(E7) and that this residue functions as a major Bohr group in the presence of Lys(E10). As shown by the titration of free thiols with 4,4'-dithiodipyridine and by mass spectrometry, this mechanism of modulating O2 affinity is independent of formation of an internal disulfide bond under the experimental conditions used, which stabilize thiols in the reduced form. In CYGB, O2 binding is cooperative, consistent with its proposed dimeric structure. Similar to myoglobin but in contrast to NGB, O2 binding to CYGB is pH-independent and exothermic throughout the temperature range investigated. Our data support the hypothesis that CYGB may be involved in O2-requiring metabolic processes. In contrast, the lower O2 affinity in NGB does not appear compatible with a physiological role involving mitochondrial O2 supply at the low O2 tensions found within neurons.  相似文献   

4.
Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to "hexacoordinate" hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O(2) binding.  相似文献   

5.
6.
Carbon dioxide interacts both with reactive nitrogen species and reactive oxygen species. In the presence of superoxide, NO reacts to form peroxynitrite that reacts with CO2 to give nitrosoperoxycarbonate. This compound rearranges to nitrocarbonate which is prone to further reactions. In an aqueous environment, the most probable reaction is hydrolysis producing carbonate and nitrate. Thus the net effect of CO2 is scavenging of peroxynitrite and prevention of nitration and oxidative damage. However, in a nonpolar environment of membranes, nitrocarbonate undergoes other reactions leading to nitration of proteins and oxidative damage. When NO reacts with oxygen in the absence of superoxide, a nitrating species N2O3 is formed. CO2 interacts with N2O3 to produce a nitrosyl compound that, under physiological pH, is hydrolyzed to nitrous and carbonic acid. In this way, CO2 also prevents nitration reactions. CO2 protects superoxide dismutase against oxidative damage induced by hydrogen peroxide. However, in this reaction carbonate radicals are formed which can propagate the oxidative damage. It was found that hypercapnia in vivo protects against the damaging effects of ischemia or hypoxia. Several mechanisms have been suggested to explain the protective role of CO2 in vivo. The most significant appears to be stabilization of the iron-transferrin complex which prevents the involvement of iron ions in the initiation of free radical reactions.  相似文献   

7.
The mechanism of the reactions of myoglobin and hemoglobin with *OH and CO3*- in the presence of oxygen was studied using pulse and gamma-radiolysis. Unlike *NO2, which adds to the porphyrin iron, *OH and CO3*- form globin radicals. These secondary radicals oxidize the Fe(II) center through both intra- and intermolecular processes. The intermolecular pathway was further demonstrated when BSA radicals derived from *OH or CO3*- oxidized oxyhemoglobin and oxymyoglobin to their respective ferric states. The oxidation yields obtained by pulse radiolysis were lower compared to gamma-radiolysis, where the contribution of radical-radical reactions is negligible. Full oxidation yields by *OH-derived globin radicals could be achieved only at relatively high concentrations of the heme protein mainly via an intermolecular pathway. It is suggested that CO3*- reaction with the protein yields Tyr and/or Trp-derived phenoxyl radicals, which solely oxidize the porphyrin iron under gamma-radiolysis conditions. The *OH particularly adds to aromatic residues, which can undergo elimination of H2O forming the phenoxyl radical, and/or react rapidly with O2 yielding peroxyl radicals. The peroxyl radical can oxidize a neighboring porphyrin iron and/or give rise to superoxide, which neither oxidize nor reduce the porphyrin iron. The potential physiological implications of this chemistry are that hemoglobin and myoglobin, being present at relatively high concentrations, can detoxify highly oxidizing radicals yielding the respective ferric states, which are not toxic.  相似文献   

8.
The role of hemoglobin in transporting oxygen is dependent on the reversible binding of oxygen to Fe(II) hemoglobin with molecular oxygen released at reduced oxygen pressures. The partially oxygenated hemoglobin formed with the release of oxygen from hemoglobin is susceptible to redox reactions where the functional Fe(II) heme is oxidized to Fe(III) and the substrate is reduced. In this article, we review two important redox reactions of hemoglobin and discuss the ramifications of these reactions. The reduction of oxygen to superoxide starts a cascade of oxidative reactions, which are a source for red cell-induced oxidative stress. The reduction of nitrite to nitric oxide produces a labile form of nitric oxide that can be a source for oxidative stress, but can also have important physiological functions.  相似文献   

9.
Abstract

The role of hemoglobin in transporting oxygen is dependent on the reversible binding of oxygen to Fe(II) hemoglobin with molecular oxygen released at reduced oxygen pressures. The partially oxygenated hemoglobin formed with the release of oxygen from hemoglobin is susceptible to redox reactions where the functional Fe(II) heme is oxidized to Fe(III) and the substrate is reduced. In this article, we review two important redox reactions of hemoglobin and discuss the ramifications of these reactions. The reduction of oxygen to superoxide starts a cascade of oxidative reactions, which are a source for red cell-induced oxidative stress. The reduction of nitrite to nitric oxide produces a labile form of nitric oxide that can be a source for oxidative stress, but can also have important physiological functions.  相似文献   

10.
Romero N  Denicola A  Radi R 《IUBMB life》2006,58(10):572-580
In this review we have analyzed the reactions of nitric oxide (.NO) with superoxide radical (O(2).-) at the vascular compartment which results in limitation of the bioavailability of .NO and the formation of peroxynitrite (ONOO-), a strong oxidant species. The intravascular formation of peroxynitrite can result in oxidative modifications of plasma and vessel wall proteins including the formation of protein-3-nitrotyrosine. The role of red blood cells (RBC) and oxyhemoglobin in the metabolism of intravascular peroxynitrite will be discussed. While RBC constitute an important 'sink' of both .NO and peroxynitrite, redox reactions of these species with oxyhemoglobin may in part contribute to erythrocyte aging. The intravascular formation, reactions and detoxification of peroxynitrite are revealed as important factors controlling vascular dysfunction and degeneration in a variety of pathophysiologically-relevant conditions.  相似文献   

11.
Human neuroglobin, a hexacoordinate hemoglobin that reversibly binds oxygen.   总被引:17,自引:0,他引:17  
Neuroglobin is a newly discovered mammalian hemoglobin that is expressed predominately in the brain (Burmester, T., Welch, B., Reinhardt, S., and Hankeln, T. (2000) Nature 407, 520-523). Neuroglobin has less than 25% identity with other vertebrate globins and shares less than 30% identity with the annelid nerve myoglobin it most closely resembles among known hemoglobins. Spectroscopic and kinetic experiments with the recombinant protein indicate that human neuroglobin is the first example of a hexacoordinate hemoglobin in vertebrates and is similar to plant and bacterial hexacoordinate hemoglobins in several respects. The ramifications of hexacoordination and potential physiological roles are explored in light of the determination of an O(2) affinity that precludes neuroglobin from functioning in traditional O(2) storage and transport.  相似文献   

12.
In the presence of H(2)O(2), heme proteins form active intermediates, which are able to oxidize exogenous molecules. Often these products are not stable compounds but reactive species on their own, such as organic radicals. They can both diffuse to the bulk of the solution or react with the protein that generated them. Here, we describe the self-modification underwent by heme proteins with globin-type fold, that is, myoglobin, hemoglobin, and neuroglobin when treated with NO(2) (-) or catechols in the presence of H(2)O(2). The reactive nitrogen species generated by NO(2) (-) give rise to nitration, oxidation, and/or crosslinking reactions between the proteins or their subunits. The quinones formed upon reaction with catechols easily modify Cys and His residues and eventually cause protein aggregation, which induces precipitation. The pattern of modifications undergone by the protein strongly depends on the nature of the protein and the reaction conditions.  相似文献   

13.
Free radicals are molecules with odd number of electrons and a high instability. Free radicals, which can occur in both organic (i.e., quinones) and inorganic molecules (i.e., O2-), are very reactive and their reactions are critical for the normal activity of a wide spectrum of biologic processes. They are also produced in the catalytic action of a variety of cellular enzymes and electron transport processes and are implicated in a number of physiologic and pathologic processes. Organisms can be exposed to free radicals in many ways other than through the processes of normal metabolism. Irradiation of organisms with electromagnetic radiation generates primary radicals (e-aq, OH., and H.), which can then undergo secondary reactions with dissolved O2 or with cellular solutes. In addition, a wide variety of environmental agents (drugs capable of redox cycling, and xenobiotics that can form free radical metabolites) including the aging process cause free radical damage to cells. This review deals with the reactions they can undergo and discusses the free radicals related to toxicology.  相似文献   

14.
Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H(2)O(2)), hydroxyl radical (HO(.)), nitric oxide (NO(.)), peroxynitrite anion (ONOO(-)), hypochlorous acid (HOCl), singlet oxygen ((1)O(2)), superoxide anion (O(2)(-).) and peroxyl radical (LOO(.)), although the validity of its ability to scavenge O(2)(-). and LOO(.) is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO. Also, its secondary and tertiary metabolites, for example, N(1)-acetyl-N(2)-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.  相似文献   

15.
Globins and hypoxia adaptation in the goldfish, Carassius auratus   总被引:2,自引:0,他引:2  
Goldfish (Carassius auratus) may survive in aquatic environments with low oxygen partial pressures. We investigated the contribution of respiratory proteins to hypoxia tolerance in C. auratus. We determined the complete coding sequence of hemoglobin alpha and beta and myoglobin, as well as partial cDNAs from neuroglobin and cytoglobin. Like the common carp (Cyprinus carpio), C. auratus possesses two paralogous myoglobin genes that duplicated within the cyprinid lineage. Myoglobin is also expressed in nonmuscle tissues. By means of quantitative real-time RT-PCR, we determined the changes in mRNA levels of hemoglobin, myoglobin, neuroglobin and cytoglobin in goldfish exposed to prolonged hypoxia (48 h at Po(2) ~ 6.7 kPa, 8 h at Po(2) ~ 1.7 kPa, 16 h at Po(2) ~ 6.7 kPa) at 20 degrees C. We observed small variations in the mRNA levels of hemoglobin, neuroglobin and cytoglobin, as well as putative hypoxia-responsive genes like lactate dehydrogenase or superoxide dismutase. Hypoxia significantly enhanced only the expression of myoglobin. However, we observed about fivefold higher neuroglobin protein levels in goldfish brain compared with zebrafish, although there was no significant difference in intrinsic myoglobin levels. These observations suggest that both myoglobin and neuroglobin may contribute to the tolerance of goldfish to low oxygen levels, but may reflect divergent adaptive strategies of hypoxia preadaptation (neuroglobin) and hypoxia response (myoglobin).  相似文献   

16.
Peroxynitrite reactions and formation in mitochondria   总被引:14,自引:0,他引:14  
Mitochondria constitute a primary locus for the intracellular formation and reactions of peroxynitrite, and these interactions are recognized to contribute to the biological and pathological effects of both nitric oxide ((*)NO) and peroxynitrite. Extra- or intramitochondrially formed peroxynitrite can diffuse through mitochondrial compartments and undergo fast direct and free radical-dependent target molecule reactions. These processes result in oxidation, nitration, and nitrosation of critical components in the matrix, inner and outer membrane, and intermembrane space. Mitochondrial scavenging and repair systems for peroxynitrite-dependent oxidative modifications operate but they can be overwhelmed under enhanced cellular (*)NO formation as well as under conditions that lead to augmented superoxide formation by the electron transport chain. Peroxynitrite can lead to alterations in mitochondrial energy and calcium homeostasis and promote the opening of the permeability transition pore. The effects of peroxynitrite in mitochondrial physiology can be largely rationalized based on the reactivities of peroxynitrite and peroxynitrite-derived carbonate, nitrogen dioxide, and hydroxyl radicals with critical protein amino acids and transition metal centers of key mitochondrial proteins. In this review we analyze (i) the existing evidence for the intramitochondrial formation and reactions of peroxynitrite, (ii) the key reactions and fate of peroxynitrite in mitochondria, and (iii) their impact in mitochondrial physiology and signaling of cell death.  相似文献   

17.
Neuroglobin, mainly expressed in vertebrate brain and retina, is a recently identified member of the globin superfamily. Augmenting O(2) supply, neuroglobin promotes survival of neurons upon hypoxic injury, potentially limiting brain damage. In the absence of exogenous ligands, neuroglobin displays a hexacoordinated heme. O(2) and CO bind to the heme iron, displacing the endogenous HisE7 heme distal ligand. Hexacoordinated human neuroglobin displays a classical globin fold adapted to host the reversible bis-histidyl heme complex and an elongated protein matrix cavity, held to facilitate O(2) diffusion to the heme. The neuroglobin structure suggests that the classical globin fold is endowed with striking adaptability, indicating that hemoglobin and myoglobin are just two examples within a wide and functionally diversified protein homology superfamily.  相似文献   

18.
Roy M  Sen S  Chakraborti AS 《Life sciences》2008,82(21-22):1102-1110
Glycation-modified hemoglobin in diabetes mellitus has been suggested to be a source of enhanced catalytic iron and free radicals causing pathological complications. The present study aims to verify this idea in experimental diabetes. Pelargonidin, an anthocyanidin, has been tested for its antidiabetic potential with emphasis on its role against pathological oxidative stress including hemoglobin-mediated free radical reactions. Male wistar rats were grouped as normal control, streptozotocin-induced diabetic control, normal treated with pelargonidin and diabetic treated with pelargonidin. Pelargonidin-treated rats received one time i.p injection of the flavonoid (3 mg/kg bodyweight). Biochemical parameters were assayed in blood samples of different groups of rats. Liver was used for histological examinations. Pelargonidin treatment normalized elevated blood glucose levels and improved serum insulin levels in diabetic rats. Glucose tolerance test appeared normal after treatment. Decreased serum levels of SOD and catalase, and increased levels of malondialdehyde and fructosamine in diabetic rats were reverted to their respective normal values after pelargonidin administration. Extents of hemoglobin glycation, hemoglobin-mediated iron release, iron-mediated free radical reactions and carbonyl formation in hemoglobin were pronounced in diabetic rats, indicating association between hemoglobin glycation and oxidative stress in diabetes. Pelargonidin counteracts hemoglobin glycation, iron release from the heme protein and iron-mediated oxidative damages, confirming glycated hemoglobin-associated oxidative stress in diabetes.  相似文献   

19.
Peroxynitrite is one of the biological oxidants whose addition to cells has been shown to either activate signaling pathways or lead to cell injury, depending on cell type and oxidant concentration. The intermediacy of free radicals in these processes has been directly demonstrated only during the interaction of peroxynitrite with erythrocytes, a particular cell type, due to its high hemoglobin content. Here, we demonstrate that the addition of peroxynitrite to a macrophage cell line (J774) led to the production of glutathionyl and protein-tyrosyl radicals. The glutathionyl radical was characterized by EPR spin-trapping experiments with 5,5-dimethyl-1-pyrroline-N-oxide. Protein-tyrosyl radical formation was suggested by direct EPR spectroscopy and confirmed by EPR spin-trapping experiments with 3,5-dibromo-4-nitrosobenzenesulfonic acid and Western blot analysis of nitrated proteins in treated macrophages. Time dependence studies of free radical formation indicate that intracellular glutathione and unidentified proteins are the initial peroxynitrite targets in macrophages and that their derived radicals trigger radical chain reactions. The results are likely to be relevant to the understanding of the bioregulatory and biodamaging effects of peroxynitrite.  相似文献   

20.
Cytoglobin (Cygb) is a novel tissue hemoprotein relatively similar to myoglobin (Mb). Because Cygb shares several structural features with Mb, we hypothesized that Cygb functions in the modulation of oxygen and nitric oxide metabolism or in scavenging free radicals within a cell. In the present study we examined the spatial and temporal expression pattern of Cygb during murine embryogenesis. Using in situ hybridization, RT-PCR, and Northern blot analyses, limited Cygb expression was observed during embryogenesis compared with Mb expression. Cygb expression was primarily restricted to the central nervous system and neural crest derivatives during the latter stages of development. In the adult mouse, Cygb is expressed in distinct regions of the brain as compared with neuroglobin (Ngb), another globin protein, and these regions are responsive to oxidative stress (i.e., hippocampus, thalamus, and hypothalamus). In contrast to Ngb, Cygb expression in the brain is induced in response to chronic hypoxia (10% oxygen). These results support the hypothesis that Cygb is an oxygen-responsive tissue hemoglobin expressed in distinct regions of thenormoxic and hypoxic brain and may play a key role in the response of the brain to ahypoxic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号