首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chicken B lymphocyte precursors and DT40 cells diversify their immunoglobulin-variable (IgV) genes through homologous recombination (HR)-mediated Ig gene conversion. To identify DNA polymerases that are involved in Ig gene conversion, we created DT40 clones deficient in DNA polymerase eta (poleta), which, in humans, is defective in the variant form of xeroderma pigmentosum (XP-V). Poleta is an error-prone translesion DNA synthesis polymerase that can bypass UV damage-induced lesions and is involved in IgV hypermutation. Like XP-V cells, poleta-disrupted (poleta) clones exhibited hypersensitivity to UV. Remarkably, poleta cells showed a significant decrease in the frequency of both Ig gene conversion and double-strand break-induced HR when compared to wild-type cells, and these defects were reversed by complementation with human poleta. Our findings identify a DNA polymerase that carries out DNA synthesis for physiological HR and provides evidence that a single DNA polymerase can play multiple cellular roles.  相似文献   

2.
Holthausen JT  Wyman C  Kanaar R 《DNA Repair》2010,9(12):1264-1272
Homologous recombination, the exchange of DNA strands between homologous DNA molecules, is involved in repair of many structural diverse DNA lesions. This versatility stems from multiple ways in which homologous DNA strands can be rearranged. At the core of homologous recombination are recombinase proteins such as RecA and RAD51 that mediate homology recognition and DNA strand exchange through formation of a dynamic nucleoprotein filament. Four stages in the life cycle of nucleoprotein filaments are filament nucleation, filament growth, homologous DNA pairing and strand exchange, and filament dissociation. Progression through this cycle requires a sequence of recombinase-DNA and recombinase protein-protein interactions coupled to ATP binding and hydrolysis. The function of recombinases is controlled by accessory proteins that allow coordination of strand exchange with other steps of homologous recombination and that tailor to the needs of specific aberrant DNA structures undergoing recombination. Accessory proteins are also able to reverse filament formation thereby guarding against inappropriate DNA rearrangements. The dynamic instability of the recombinase-DNA interactions allows both positive and negative action of accessory proteins thereby ensuring that genome maintenance by homologous recombination is not only flexible and versatile, but also accurate.  相似文献   

3.
The antitumor drug cisplatin causes intrastrand cross-linking of adjacent guanine residues that severely distorts the DNA backbone. These DNA adducts impede the progress of the replisome and may result in replication fork arrest. In Escherichia coli, the response to cisplatin involves the action of the prototypic recombinase RecA. Here we show that RecA can utilize, albeit at reduced levels, oligonucleotides that bear site-specific cisplatin-induced 1,2 d(GpG) intrastrand cross-links in strand invasion reactions. Binding of RecA to cisplatin-damaged oligonucleotides was not affected, indicating that the impediment was in the pairing step. The cognate E. coli single-strand DNA-binding protein specifically stimulated strand invasion particularly with cisplatin-damaged DNA. These results indicate that RecA is capable of processing the major cisplatin-induced lesion via a recombination mechanism.  相似文献   

4.
The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta (pol eta), which is involved in the replication of damaged DNA. Pol eta catalyzes efficient and accurate translesion synthesis past cis-syn cyclobutane di-thymine lesions. Here we show that human pol eta can catalyze translesion synthesis past an abasic (AP) site analog, N-2-acetylaminofluorene (AAF)-modified guanine, and a cisplatin-induced intrastrand cross-link between two guanines. Pol eta preferentially incorporated dAMP and dGMP opposite AP, and dCMP opposite AAF-G and cisplatin-GG, but other nucleotides were also incorporated opposite these lesions. However, after incorporating an incorrect nucleotide opposite a lesion, pol eta could not continue chain elongation. In contrast, after incorporating the correct nucleotide opposite a lesion, pol eta could continue chain elongation, whereas pol alpha could not. Thus, the fidelity of translesion synthesis by human pol eta relies not only on the ability of this enzyme to incorporate the correct nucleotide opposite a lesion, but also on its ability to elongate only DNA chains that have a correctly incorporated nucleotide opposite a lesion.  相似文献   

5.
We have studied the relationship between DNA replication and recombination in Schizosaccharomyces pombe using two-dimensional gel electrophoresis and functional analysis. Our results indicate that the activation of replication origins (ORIs) during the mitotic cell cycle is associated with the generation of joint DNA molecules between sister chromatids. The frequency of integration by homologous recombination was up to 50-fold higher than the genomic average within a narrow window overlapping the ars1 replication initiation site. The S. pombe rad22Delta, rhp51Delta, and rhp54Delta mutants, deficient in mitotic recombination, activate ORIs very inefficiently and accumulate abnormal replication intermediates. These results focus on the general link between replication and recombination previously found in several systems and suggest a role for recombination in the initiation of eukaryotic DNA replication.  相似文献   

6.
7.
Classical high-fidelity DNA polymerases discriminate between the correct and incorrect nucleotides by using geometric constraints imposed by the tight fit of the active site with the incipient base pair. Consequently, Watson-Crick (W-C) hydrogen bonding between the bases is not required for the efficiency and accuracy of DNA synthesis by these polymerases. DNA polymerase eta (Poleta) is a low-fidelity enzyme able to replicate through DNA lesions. Using difluorotoluene, a nonpolar isosteric analog of thymine unable to form W-C hydrogen bonds with adenine, we found that the efficiency and accuracy of nucleotide incorporation by Poleta are severely impaired. From these observations, we suggest that W-C hydrogen bonding is required for DNA synthesis by Poleta; in this regard, Poleta differs strikingly from classical high-fidelity DNA polymerases.  相似文献   

8.
Summary To study the structure of in vivo mitochondrial DNA recombination intermediates in Saccharomyces cerevisiae, we used a deletion mutant of the wild type mitochondrial genome. The mtDNA of this petite is composed of a direct tandem repetition of an 4,600 pb monomer repeat unit with a unique HhaI restriction enzyme site per repeat. The structure of native mtDNA isolated from log phase cells, and mtDNA crosslinked in vivo with trioxsalen plus UVA irradiation, was studied by electron microscopy. Both populations contained crossed strand Holliday type recombination intermediates. Digestion of both non-crosslinked and crosslinked and mtDNA with the enzyme HhaI released X and H shaped structures composed of two monomers. Electron microscopic analysis revealed that these structures had pairs of equal length arms as required for homologous recombination intermediates and that junctions could occur at points along the entire monomer length. The percentage of recombining monomers in both non-crosslinked and trioxsalen crosslinked mtDNA was calculated by quantitative analysis of all the structures present in an HhaI digest. The relationship between these values and the apparent dispersive replication of mtDNA in density-shift experiments and mtDNA fragility during isolation is discussed.  相似文献   

9.
A model is presented for the translocation dynamics of the strand displacement DNA synthesis by DNA polymerases such as polymerase I family. (i) The model gives an explanation to the experimental results which showed that the rate of strand displacement DNA synthesis is nearly consistent with that of single stranded primer extension synthesis, although the two are expected to have substantial differences in their energetics. (ii) During strand displacement DNA synthesis, the pausing at the specific sequence is considered to be due to an affinity of the fingers subdomain for the specific sequence of dsDNA downstream of the single strand. The theoretical results on the sequence-dependent pausing dynamics such as the mean pausing lifetimes and the distribution of the pausing lifetime are consistent with the experimental data. Moreover, predicted results are presented for the binding affinity of the fingers subdomain for the specific sequence of dsDNA and the dependence of the mean sequence-dependent pausing lifetime on the external force acting on the polymerase.  相似文献   

10.
Kusumoto R  Masutani C  Iwai S  Hanaoka F 《Biochemistry》2002,41(19):6090-6099
The XP-V (xeroderma pigmentosum variant) gene product, human DNA polymerase eta (pol eta), catalyzes efficient and accurate translesion synthesis (TLS) past cis-syn thymine-thymine dimers (TT dimer). In addition, recent reports suggest that pol eta is involved in TLS past various other types of lesion, including an oxidative DNA damage, 8-hydroxyguanine. Here, we compare the abilities of pol alpha and pol eta to replicate across thymine glycol (Tg) using purified synthetic oligomers containing a 5R- or 5S-Tg. DNA synthesis by pol alpha was inhibited at both steps of insertion of a nucleotide opposite the lesion and extension from the resulting product, indicating that pol alpha can weakly contribute to TLS past Tg lesions. In contrast, pol eta catalyzed insertion opposite the lesion as efficient as that opposite undamaged T, while extension was inhibited especially on the 5S-Tg template. Thus, pol eta catalyzed relatively efficient TLS past 5R-Tg than 5S-Tg. To compare the TLS abilities of pol eta for these lesions, we determined the kinetic parameters of pol eta for catalyzing TLS past a TT dimer, an N-2-acetylaminofluorene-modified guanine, and an abasic site analogue. The possible mechanisms of pol eta-catalyzed TLS are discussed on the basis of these results.  相似文献   

11.
Xeroderma pigmentosum (XP) patients are highly sensitive to sunlight, and they suffer from a high incidence of skin cancers. The variant form of XP results from mutations in the hRAD30A gene, which encodes the DNA polymerase in humans, hPol(eta). Of the eukaryotic DNA polymerases, only human Pol(eta) and its yeast counterpart have the ability to replicate DNA containing a cis-syn thymine-thymine (T-T) dimer. Here we measure the fidelity of hPol(eta) on all four nondamaged template bases and at each thymine residue of a cis-syn T-T dimer. Opposite all four nondamaged template bases, hPol(eta) misincorporates nucleotides with a frequency of approximately 10(-2)-10(-3), and importantly, hPol(eta) synthesizes DNA opposite the T-T dimer with the same accuracy and efficiency as opposite the nondamaged DNA. The low fidelity of hPol(eta) may derive from a flexible active site that renders the enzyme more tolerant of geometric distortions in DNA and enables it to synthesize DNA past a T-T dimer.  相似文献   

12.
SUMO conjugation is known to occur in response to double‐stranded DNA breaks in mammalian cells, but whether SUMO deconjugation has a role remains unclear. Here, we show that the SUMO/Sentrin/Smt3‐specific peptidase, SENP7, interacts with the chromatin repressive KRAB‐associated protein 1 (KAP1) through heterochromatin protein 1 alpha (HP1α). SENP7 promotes the removal of SUMO2/3 from KAP1 and regulates the interaction of the chromatin remodeler CHD3 with chromatin. Consequently, in the presence of CHD3, SENP7 is required for chromatin relaxation in response to DNA damage, for homologous recombination repair and for cellular resistance to DNA‐damaging agents. Thus, deSUMOylation by SENP7 is required to promote a permissive chromatin environment for DNA repair.  相似文献   

13.
The Fanconi anemia (FA) protein FANCC is essential for chromosome stability in vertebrate cells, a feature underscored by the extreme sensitivity of FANCC-deficient cells to agents that crosslink DNA. However, it is not known how this FA protein facilitates the repair of both endogenously acquired and mutagen-induced DNA damage. Here, we use the model vertebrate cell line DT40 to address this question. We discover that apart from functioning in homologous recombination, FANCC also promotes the mutational repair of endogenously generated abasic sites. Moreover in these vertebrate cells, the efficient repair of crosslinks requires the combined functions of FANCC, translesion synthesis, and homologous recombination. These studies reveal that the FA proteins cooperate with key mutagenesis and repair processes that enable replication of damaged DNA.  相似文献   

14.
DNA polymerases play a central role during homologous recombination (HR), but the identity of the enzyme(s) implicated remains elusive. The pol3-ct allele of the gene encoding the catalytic subunit of DNA polymerase δ (Polδ) has highlighted a role for this polymerase in meiotic HR. We now address the ubiquitous role of Polδ during HR in somatic cells. We find that pol3-ct affects gene conversion tract length during mitotic recombination whether the event is initiated by single-strand gaps following UV irradiation or by site-specific double-strand breaks. We show that the pol3-ct effects on gene conversion are completely independent of mismatch repair, indicating that shorter gene conversion tracts in pol3-ct correspond to shorter extensions of primed DNA synthesis. Interestingly, we find that shorter repair tracts do not favor synthesis-dependent strand annealing at the expense of double-strand-break repair. Finally, we show that the DNA polymerases that have been previously suspected to mediate HR repair synthesis (Pol and Polη) do not affect gene conversion during induced HR, including in the pol3-ct background. Our results argue strongly for the preferential recruitment of Polδ during HR.  相似文献   

15.
DNA polymerase (pol) eta participates in hypermutation of A:T bases in Ig genes because humans deficient for the polymerase have fewer substitutions of these bases. To determine whether polymerase eta is also responsible for the well-known preference for mutations of A vs T on the nontranscribed strand, we sequenced variable regions from three patients with xeroderma pigmentosum variant (XP-V) disease, who lack polymerase eta. The frequency of mutations in the intronic region downstream of rearranged J(H)4 gene segments was similar between XP-V and control clones; however, there were fewer mutations of A:T bases and correspondingly more substitutions of C:G bases in the XP-V clones (p < 10(-7)). There was significantly less of a bias for mutations of A compared with T nucleotides in the XP-V clones compared with control clones, whereas the frequencies for mutations of C and G were identical in both groups. An analysis of mutations in the WA sequence motif suggests that polymerase eta generates more mutations of A than T on the nontranscribed strand. This in vivo data from polymerase eta-deficient B cells correlates well with the in vitro specificity of the enzyme. Because polymerase eta inserts more mutations opposite template T than template A, it would generate more substitutions of A on the newly synthesized strand.  相似文献   

16.
Poxvirus DNA polymerases play a critical role in promoting virus recombination. To test if vaccinia polymerase (E9L) could mediate this effect by catalyzing the post-synaptic processing of recombinant joint molecules, we prepared substrates bearing a nick, a 3′-unpaired overhang, a 5′ overhang, or both 3′ and 5′ overhangs. The sequence of the 5′ overhang was also modified to permit or preclude branch migration across the joint site. These substrates were incubated with E9L, and the fate of the primer strand characterized under steady-state reaction conditions. E9L rapidly excises a mispaired 3′ strand from a DNA duplex, producing a meta-stable nicked molecule that is a substrate for ligase. The reaction was not greatly affected by adding an unpaired 5′ strand, but since such molecules cannot be processed into nicked intermediates, the 3′-ended strand continued to be subjected to exonucleolytic attack. Incorporating homology into the 5′ overhang prevented this and permitted some strand assimilation, but such substrates also promoted strand-displacement DNA synthesis of a type predicted by the 1981 Moyer and Graves model for poxvirus replication. Single-strand annealing reactions are used by poxviruses to produce recombinant viruses and these data show that virus DNA polymerases can process DNA in such a manner as to both generate single-stranded substrates for such reactions and to facilitate the final processing of the reaction products.  相似文献   

17.
Recombination-dependent replication is an essential housekeeping function in prokaryotes and eukaryotes, serving, for example, to restart DNA replication after the repair of a double-strand break. Little is known about the interplay between the recombination and replication machinery when recombination intermediates are used as substrates for DNA replication. We show here that recombination intermediates formed between linear duplex and supercoiled plasmid DNAs are substrates for a generalized strand displacement DNA synthesis reaction in which the 3'-OH of the invading strand in the recombination intermediate is used as a primer. DNA synthesis is driven by negative superhelicity and is inhibited if disassembly of the RecA filament is prevented. Thus, assembly and disassembly of RecA filaments in the same direction facilitates filament clearance from the 3'-end of the invading strand, allowing DNA synthesis to occur from recombination intermediates.  相似文献   

18.
Insertions and deletions in coding sequences can alter the reading frame of genes and have profound biological consequences. In 1966, Streisinger proposed that these mutations result from strand slippage, which in repetitive sequences generates misaligned intermediates stabilized by correct base pairing that support polymerization. We report here crystal structures of human DNA polymerase lambda, which frequently generates deletion mutations, bound to such intermediates. Each contains an extrahelical template nucleotide upstream of the active site. Surprisingly, the extra nucleotide, even when combined with an adjacent mismatch, does not perturb polymerase active site geometry, which is indistinguishable from that for correctly aligned strands. These structures reveal how pol lambda can polymerize on substrates with minimal homology during repair of double-strand breaks and represent strand-slippage intermediates consistent with Streisinger's classical hypothesis. They are thus relevant to the origin of single-base deletions, a class of mutations that can confer strong biological phenotypes.  相似文献   

19.
Tan FJ  Hoang ML  Koshland D 《PLoS genetics》2012,8(3):e1002633
DNA double-strand breaks impact genome stability by triggering many of the large-scale genome rearrangements associated with evolution and cancer. One of the first steps in repairing this damage is 5'→3' resection beginning at the break site. Recently, tools have become available to study the consequences of not extensively resecting double-strand breaks. Here we examine the role of Sgs1- and Exo1-dependent resection on genome stability using a non-selective assay that we previously developed using diploid yeast. We find that Saccharomyces cerevisiae lacking Sgs1 and Exo1 retains a very efficient repair process that is highly mutagenic to genome structure. Specifically, 51% of cells lacking Sgs1 and Exo1 repair a double-strand break using repetitive sequences 12-48 kb distal from the initial break site, thereby generating a genome rearrangement. These Sgs1- and Exo1-independent rearrangements depend partially upon a Rad51-mediated homologous recombination pathway. Furthermore, without resection a robust cell cycle arrest is not activated, allowing a cell with a single double-strand break to divide before repair, potentially yielding multiple progeny each with a different rearrangement. This profusion of rearranged genomes suggests that cells tolerate any dangers associated with extensive resection to inhibit mutagenic pathways such as break-distal recombination. The activation of break-distal recipient repeats and amplification of broken chromosomes when resection is limited raise the possibility that genome regions that are difficult to resect may be hotspots for rearrangements. These results may also explain why mutations in resection machinery are associated with cancer.  相似文献   

20.
Despite intense effort over the past 30 years, the molecular determinants of sequence selectivity in RecA-mediated homologous recombination have remained elusive. Here, we describe when and how sequence homology is recognized between DNA strands during recombination in the context of a kinetic model for RecA-mediated DNA strand exchange. We characterized the transient intermediates of the reaction using pre-steady-state kinetic analysis of strand exchange using oligonucleotide substrates containing a single fluorescent G analog. We observed that the reaction system was sensitive to heterology between the DNA substrates; however, such a "heterology effect" was not manifest when functional groups were added to or removed from the edges of the base-pairs facing the minor groove of the substrate duplex. Hence, RecA-mediated recombination must occur without the involvement of a triple helix, even as a transient intermediate in the process. The fastest detectable reaction phase was accelerated when the structure or stability of the substrate duplex was perturbed by internal mismatches or the replacement of G.C by I.C base-pairs. These findings indicate that the sequence specificity in recombination is achieved by Watson-Crick pairing in the context of base-pair dynamics inherent to the extended DNA structure bound by RecA during strand exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号