首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of the bacteriophage T4 gene 41 DNA helicase   总被引:5,自引:0,他引:5  
The T4 gene 41 protein and the gene 61 protein function together as a primase-helicase within the seven protein bacteriophage T4 multienzyme complex that replicates duplex DNA in vitro. We have previously shown that the 41 protein is a 5' to 3' helicase that requires a single-stranded region on the 5' side of the duplex to be unwound and is stimulated by the 61 protein (Venkatesan, M., Silver L. L., and Nossal, N. G. (1982) J. biol. Chem. 257, 12426-12434). The 41 protein, in turn, is required for pentamer primer synthesis by the 61 protein. We now show that the 41 protein helicase unwinds a partially duplex DNA molecule containing a performed fork more efficiently than a DNA molecule without a fork. Optimal helicase activity requires greater than 29 nucleotides of single-stranded DNA on the 3' side of the duplex (analogous to the leading strand template). This result suggests the 41 protein helicase interacts with the leading strand template as well as the lagging strand template as it unwinds the duplex region at the replication fork. As the single-stranded DNA on the 3' side of a short duplex (51 base pairs) is lengthened, the stimulation of the 41 protein helicase by the 61 protein is diminished. However, both the 61 protein and a preformed fork are essential for efficient unwinding of longer duplex regions (650 base pairs). These findings suggest that the 61 protein promotes both the initial unwinding of the duplex to form a fork and subsequent unwinding of longer duplexes by the 41 protein. A stable protein-DNA complex, detected by a gel mobility shift of phi X174 single-stranded DNA, requires both the 41 and 61 proteins and a rNTP (preferably rATP or rGTP, the nucleotides with the greatest effect on the helicase activity). In the accompanying paper, we report the altered properties of a proteolytic fragment of the 41 protein helicase and its effect on in vitro DNA synthesis in the T4 multienzyme replication system.  相似文献   

2.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

3.
Bacteriophage T4 gene 59 protein greatly stimulates the loading of the T4 gene 41 helicase in vitro and is required for recombination and recombination-dependent DNA replication in vivo. 59 protein binds preferentially to forked DNA and interacts directly with the T4 41 helicase and gene 32 single-stranded DNA-binding protein. The helicase loader is an almost completely alpha-helical, two-domain protein, whose N-terminal domain has strong structural similarity to the DNA-binding domains of high mobility group proteins. We have previously speculated that this high mobility group-like region may bind the duplex ahead of the fork, with the C-terminal domain providing separate binding sites for the fork arms and at least part of the docking area for the helicase and 32 protein. Here, we characterize several mutants of 59 protein in an initial effort to test this model. We find that the I87A mutation, at the position where the fork arms would separate in the model, is defective in binding fork DNA. As a consequence, it is defective in stimulating both unwinding by the helicase and replication by the T4 system. 59 protein with a deletion of the two C-terminal residues, Lys(216) and Tyr(217), binds fork DNA normally. In contrast to the wild type, the deletion protein fails to promote binding of 32 protein on short fork DNA. However, it binds 32 protein in the absence of DNA. The deletion is also somewhat defective in stimulating unwinding of fork DNA by the helicase and replication by the T4 system. We suggest that the absence of the two terminal residues may alter the configuration of the lagging strand fork arm on the surface of the C-terminal domain, so that it is a poorer docking site for the helicase and 32 protein.  相似文献   

4.
The gene 45 protein from bacteriophage T4 has been purified and is crystallized. This protein is part of the T4 DNA replication complex. The crystallized protein is active in complementation assays. X-ray diffraction analysis is in progress; data are measured for the native and several heavy atom derivatives. The crystals diffract to about 3.5-A resolution.  相似文献   

5.
Bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596-18607).  相似文献   

6.
The bacteriophage T4 59 protein (gp59) plays an essential role in recombination and replication by mediating the assembly of the gene 41 helicase (gp41) onto DNA. gp59 is required to displace the gp32 single-stranded binding protein on the lagging strand to expose a site for helicase binding. To gain a better understanding of the mechanism of helicase assembly, the architecture and stoichiometry of the gp41-gp59 complex were investigated. Both the N and C termini of gp41 were found to lie close to or in the gp41-gp41 subunit interface and interact with gp59. The site of interaction of gp41 on gp59 is proximal to Cys-215 of gp59. Binding of gp41 to gp59 stimulates a conformational change in the protein resulting in hexamer formation of gp59, and gp59 likewise stimulates oligomer formation of gp41. The gp59 subunits in this complex are arranged in a head to head orientation, such that Cys-42 of one subunit is in close proximity to Cys-42 on an adjacent subunit, and Cys-215 on one subunit is close to Cys-215 on a neighboring subunit. As the helicase is loaded onto DNA, a conformational change in the gp41-gp59 complex occurs, which may serve to displace gp32 from the lagging strand and load the hexameric helicase in its place.  相似文献   

7.
The T4 helicase loading protein (gp59) interacts with a multitude of DNA replication proteins. In an effort to determine the functional consequences of these protein-protein interactions, point mutations were introduced into the gp59 protein. Mutations were chosen based on the available crystal structure and focused on hydrophobic residues with a high degree of solvent accessibility. Characterization of the mutant proteins revealed a single mutation, Y122A, which is defective in polymerase binding and has weakened affinity for the helicase. The interaction between single-stranded DNA-binding protein and Y122A is unaffected, as is the affinity of Y122A for DNA substrates. When standard concentrations of helicase are employed, Y122A is unable to productively load the helicase onto forked DNA substrates. As a result of the loss of polymerase binding, Y122A cannot inhibit the polymerase during nucleotide idling or prevent it from removing the primer strand of a D-loop. However, Y122A is capable of inhibiting strand displacement synthesis by polymerase. The retention of strand displacement inhibition by Y122A, even in the absence of a gp59-polymerase interaction, indicates that there are two modes of polymerase inhibition by gp59. Inhibition of the polymerase activity only requires gp59 to bind to the replication fork, whereas inhibition of the exonuclease activity requires an interaction between the polymerase and gp59. The inability of Y122A to interact with both the polymerase and the helicase suggests a mechanism for polymerase unlocking by the helicase based on a direct competition between the helicase and polymerase for an overlapping binding site on gp59.  相似文献   

8.
9.
We compare the activities of the wild-type (gp41WT) and mutant (gp41delta C20) forms of the bacteriophage T4 replication helicase. In the gp41delta C20 mutant the helicase subunits have been genetically truncated to remove the 20 residue C-terminal tail peptide domains present in the wild-type enzyme. Here, we examine the interactions of these helicase forms with the T4 gp59 helicase loader and the gp32 single-stranded DNA binding proteins, both of which are physically and functionally coupled with the helicase in the T4 DNA replication complex. We show that the wild-type and mutant forms of the helicase do not differ in their ability to assemble into dimers and hexamers, nor in their interactions with gp61 (the T4 primase). However they do differ in their gp59-stimulated unwinding activities and in their abilities to translocate along a ssDNA strand that has been coated with gp32. We demonstrate that functional coupling between gp59 and gp41 involves direct interactions between the C-terminal tail peptides of the helicase subunits and the loading protein, and measure the energetics and kinetics of these interactions. This work helps to define a gp41-gp59 assembly pathway that involves an initial interaction between the C-terminal tails of the helicases and the gp59 loader proteins, followed by a conformational change of the helicase subunits that exposes new interaction surfaces, which can then be trapped by the gp59 protein. Our results suggest that the gp41-gp59 complex is then poised to bind ssDNA portions of the replication fork. We suggest that one of the important functions of gp59 may be to aid in the exposure of the ssDNA binding sites of the helicase subunits, which are otherwise masked and regulated by interactions with the helicase carboxy-terminal tail peptides.  相似文献   

10.
Bacteriophage T4 gene 41 protein is one of the two phage proteins previously shown to be required for the synthesis of the pentaribonucleotide primers which initiate the synthesis of new chains in the T4 DNA replication system. We now show that a DNA helicase activity which can unwind short fragments annealed to complementary single-stranded DNA copurifies with the gene 41 priming protein. T4 gene 41 is essential for both the priming and helicase activities, since both are absent after infection by T4 phage with an amber mutation in gene 41. A complete gene 41 product is also required for two other activities previously found in purified preparations of the priming activity: a single-stranded DNA-dependent GTPase (ATPase) and an activity which stimulates strand displacement synthesis catalyzed by T4 DNA polymerase, the T4 gene 44/62 and 45 polymerase accessory proteins, and the T4 gene 32 helix-destabilizing protein (five-protein reaction). The 41 protein helicase requires a single-stranded DNA region adjoining the duplex region and begins unwinding at the 3' terminus of the fragment. There is a sigmoidal dependence on both nucleotide (rGTP, rATP) and protein concentration for this reaction. 41 Protein helicase activity is stimulated by our purest preparation of the T4 gene 61 priming protein, and by the T4 gene 44/62 and 45 polymerase accessory proteins. The direction of unwinding is consistent with the idea that 41 protein facilitates DNA synthesis on duplex templates by destabilizing the helix as it moves 5' to 3' on the displaced strand.  相似文献   

11.
The bacteriophage T4 gene 59 helicase assembly protein is required for recombination-dependent DNA replication, which is the predominant mode of DNA replication in the late stage of T4 infection. T4 gene 59 helicase assembly protein accelerates the loading of the T4 gene 41 helicase during DNA synthesis by the T4 replication system in vitro. T4 gene 59 helicase assembly protein binds to both T4 gene 41 helicase and T4 gene 32 single-stranded DNA binding protein, and to single and double-stranded DNA. We show here that T4 gene 59 helicase assembly protein binds most tightly to fork DNA substrates, with either single or almost entirely double-stranded arms. Our studies suggest that the helicase assembly protein is responsible for loading T4 gene 41 helicase specifically at replication forks, and that its binding sites for each arm must hold more than six, but not more than 12 nucleotides. The 1.45 A resolution crystal structure of the full-length 217-residue monomeric T4 gene 59 helicase assembly protein reveals a novel alpha-helical bundle fold with two domains of similar size. Surface residues are predominantly basic (pI 9.37) with clusters of acidic residues but exposed hydrophobic residues suggest sites for potential contact with DNA and with other protein molecules. The N-terminal domain has structural similarity to the double-stranded DNA binding domain of rat HMG1A. We propose a speculative model of how the T4 gene 59 helicase assembly protein might bind to fork DNA based on the similarity to HMG1, the location of the basic and hydrophobic regions, and the site size of the fork arms needed for tight fork DNA binding. The fork-binding model suggests putative binding sites for the T4 gene 32 single-stranded DNA binding protein and for the hexameric T4 gene 41 helicase assembly.  相似文献   

12.
Efficient DNA replication involves coordinated interactions among DNA polymerase, multiple factors, and the DNA. From bacteriophage T4 to eukaryotes, these factors include a helicase to unwind the DNA ahead of the replication fork, a single-stranded binding protein (SSB) to bind to the ssDNA on the lagging strand, and a helicase loader that associates with the fork, helicase, and SSB. The previously reported structure of the helicase loader in the T4 system, gene product (gp)59, has revealed an N-terminal domain, which shares structural homology with the high mobility group (HMG) proteins from eukaryotic organisms. Modeling of this structure with fork DNA has suggested that the HMG-like domain could bind to the duplex DNA ahead of the fork, whereas the C-terminal portion of gp59 would provide the docking sites for helicase (T4 gp41), SSB (T4 gp32), and the ssDNA fork arms. To test this model, we have used random and targeted mutagenesis to generate mutations throughout gp59. We have assayed the ability of the mutant proteins to bind to fork, primed fork, and ssDNAs, to interact with SSB, to stimulate helicase activity, and to function in leading and lagging strand DNA synthesis. Our results provide strong biochemical support for the role of the N-terminal gp59 HMG motif in fork binding and the interaction of the C-terminal portion of gp59 with helicase and SSB. Our results also suggest that processive replication may involve the switching of gp59 between its interactions with helicase and SSB.  相似文献   

13.
Limited proteolysis of bacteriophage T7 primase/helicase with endoproteinase Glu-C produces several proteolytic fragments. One of these fragments, which is derived from the C-terminal region of the protein, was prepared and shown to retain helicase activity. This result supports a model in which the gene 4 proteins consist of functionally separable domains. Crystals of this C-terminal fragment of the protein have been obtained that are suitable for X-ray diffraction studies.  相似文献   

14.
The product specified by T4 bacteriophage gene 41 is known from genetic analyses to be essential for phage DNA replication in vivo. Correspondingly, the purified gene 41 protein is an essential component of an efficient in vitro DNA replication system reconstructed from seven purified T4 replication proteins; it is required both for the synthesis of short RNA primers (in conjunction with the T4 gene 61 protein) and for the rapid unwinding of the double-helical DNA template at a replication fork. The purified gene 41 protein exhibits a DNA-dependent GTPase (and ATPase) activity. In this report, we have used this associated GTPase activity as a biochemical probe for the analysis of the interactions between DNA and the 41 protein. Our results suggest that, upon binding GTP, the 41 protein monomer is induced to form a dimer, which can them form a tight complex with single-stranded DNA. Driven by the repeated hydrolysis of GTP molecules, the 41 protein dimer appears to run rapidly along the bound DNA chain. Studies with the synthetic GTP analogue, GTP gamma S, suggest that GTP hydrolysis is required for this 41 protein movement, but that it is not essential for the function of the 41 protein in RNA primer synthesis. In sum, our observations suggest that a 41 protein dimer runs along the lagging strand template at a DNA replication fork; from this position, it functions as a DNA helicase and simultaneously interacts with the T4 gene 61 protein to make the pentaribonucleotide primers which initiate Okazaki pieces at specific primer initiation sites.  相似文献   

15.
Processive strand-displacement DNA synthesis with the T4 replication system requires functional "coupling" between the DNA polymerase (gp43) and the helicase (gp41). To define the physical basis of this functional coupling, we have used analytical ultracentrifugation to show that gp43 is a monomeric species at physiological protein concentrations and that gp41 and gp43 do not physically interact in the absence of DNA, suggesting that the functional coupling between gp41 and gp43 depends significantly on interactions modulated by the replication fork DNA. Results from strand-displacement DNA synthesis show that a minimal gp41-gp43 replication complex can perform strand-displacement synthesis at approximately 90 nts/s in a solution containing poly(ethylene glycol) to drive helicase loading. In contrast, neither the Klenow fragment of Escherichia coli DNA polymerase I nor the T7 DNA polymerase, both of which are nonprocessive polymerases, can carry out strand-displacement DNA synthesis with gp41, suggesting that the functional helicase-polymerase coupling may require the homologous system. However, we show that a heterologous helicase-polymerase pair can work if the polymerase is processive. Strand-displacement DNA synthesis using the gp41 helicase with the T4 DNA polymerase holoenzyme or the phage T7 DNA polymerase-thioredoxin complex, both of which are processive, proceeds at the rate of approximately 250 nts/s. However, replication fork assembly is less efficient with the heterologous helicase-polymerase pair. Therefore, a processive (homologous or heterologous) "trailing" DNA polymerase is sufficient to improve gp41 processivity and unwinding activity in the elongation stage of the helicase reaction, and specific T4 helicase-polymerase coupling becomes significant only in the assembly (or initiation) stage.  相似文献   

16.
The Gp59 protein of bacteriophage T4 plays critical roles in recombination-dependent DNA replication and repair by correctly loading the replicative helicase, Gp41, onto recombination intermediates. Previous work demonstrated that Gp59 is required to load helicase onto single-stranded DNA that is saturated with Gp32, the T4 single-stranded DNA (ssDNA)-binding protein. Gp59 and Gp32 bind simultaneously to ssDNA, forming a Gp59-Gp32-ssDNA complex that is a key intermediate in helicase loading. Here we characterize the assembly and dynamics of this helicase loading complex (HLC) through changes in the fluorescent states of Gp32F, a fluorescein-Gp32 conjugate. Results show that HLC formation requires a minimum Gp32-ssDNA cluster size and that Gp59 co-localizes with Gp32-ssDNA clusters in the presence of excess free ssDNA. These and other results indicate that Gp59 targets helicase assembly onto Gp32-ssDNA clusters that form on the displaced strand of D-loops, which suggests a mechanism for the rapid initiation of recombination-dependent DNA replication. Helicase loading at the HLC requires ATP binding (not hydrolysis) by Gp41 and results in local remodeling of Gp32 within the HLC. Subsequent ATPase-driven translocation of Gp41 progressively disrupts Gp32-ssDNA interactions. Evidence suggests that Gp59 from the HLC is recycled to promote multiple rounds of helicase assembly on Gp32-ssDNA, a capability that could be important for the restart of stalled replication forks.  相似文献   

17.
The bacteriophage T4 gene 41 protein is a 5' to 3' DNA helicase which unwinds DNA ahead of the growing replication fork and, together with the T4 gene 61 protein, also functions as a primase to initiate DNA synthesis on the lagging strand. Proteolytic cleavage by trypsin approximately 20 amino acids from the COOH terminus of the 41 protein produces 41T, a 51,500-dalton fragment (possibly still associated with small COOH-terminal fragments) which still retains the ssDNA-stimulated GTPase (ATPase) activity, the 61 protein-stimulated DNA helicase activity, and the ability to act with 61 protein to synthesize pentaribonucleotide primers. In the absence of the T4 gene 32 ssDNA binding protein, the primase-helicase composed of the tryptic fragment (41T) and 61 proteins efficiently primes DNA synthesis on circular ssDNA templates by the T4 DNA polymerase and the three T4 polymerase accessory proteins. In contrast, the 41T protein is defective as a helicase or a primase component on 32 protein-covered DNA. Thus, unlike the intact protein, 41T does not support RNA-dependent DNA synthesis on 32 protein-covered ssDNA and does not stimulate strand displacement DNA synthesis on a nicked duplex DNA template. High concentrations of 32 protein strongly inhibit RNA primer synthesis with either 41 T or intact 41 protein. The 44/62 and 45 polymerase accessory proteins (and even the 44/62 proteins to some extent) substantially reverse the 32 protein inhibition of RNA primer synthesis with intact 41 protein but not with 41T protein. We propose that the COOH-terminal region of the 41 protein is required for its interaction with the T4 polymerase accessory proteins, permitting the synthesis and utilization of RNA primers and helicase function within the T4 replication complex. When this region is altered, as in 41T protein, the protein is unable to assemble a functional primase-helicase in the replication complex. An easy and rapid purification of T4 41 protein produced by a plasmid encoding this gene (Hinton, D. M., Silver, L. L., and Nossal, N. G. (1985) J. Biol. Chem. 260, 12851-12857) is also described.  相似文献   

18.
Reactions at the replication fork of bacteriophage T7 have been reconstituted in vitro on a preformed replication fork. A minimum of three proteins is required to catalyze leading and lagging strand synthesis. The T7 gene 4 protein, which exists in two forms of molecular weight 56,000 and 63,000, provides helicase and primase activities. A tight complex of the T7 gene 5 protein and Escherichia coli thioredoxin provides DNA polymerase activity. Gene 4 protein and DNA polymerase catalyze processive leading strand synthesis. Gene 4 protein molecules serving as helicase remain bound to the template as leading strand synthesis proceeds greater than 40 kilobases. Primer synthesis for lagging strand synthesis is catalyzed by additional gene 4 protein molecules that undergo multiple association/dissociation steps to catalyze multiple rounds of primer synthesis. The smaller molecular weight form of gene 4 protein has been purified from an equimolar mixture of both forms. Removal of the large form results in the loss of primase activity but not of helicase activity. Submolar amounts of the large form present in a mixture of both forms are sufficient to restore high specific activity of primase characteristic of an equimolar mixture of both forms. These results suggest that the gene 4 primase is an oligomer which is composed of both molecular weight forms. The large form may be the distributive component of the primase which dissociates from the template after each round of primer synthesis.  相似文献   

19.
The gene 4 protein of bacteriophage T7 plays a central role in DNA replication by providing both helicase and primase activities. The C-terminal helicase domain is not only responsible for DNA-dependent dTTP hydrolysis, translocation, and DNA unwinding, but it also interacts with T7 DNA polymerase to coordinate helicase and polymerase activities. The C-terminal 17 residues of gene 4 protein are critical for its interaction with the T7 DNA polymerase/thioredoxin complex. This C terminus is highly acidic; replacement of these residues with uncharged residues leads to a loss of interaction with T7 DNA polymerase/thioredoxin and an increase in oligomerization of the gene 4 protein. Such an alteration on the C terminus results in a reduced efficiency in strand displacement DNA synthesis catalyzed by gene 4 protein and T7 DNA polymerase/thioredoxin. Replacement of the C-terminal amino acid, phenylalanine, with non-aromatic residues also leads to a loss of interaction of gene 4 protein with T7 DNA polymerase/thioredoxin. However, neither of these modifications of the C terminus affects helicase and primase activities. A chimeric gene 4 protein containing the acidic C terminus of the T7 gene 2.5 single-stranded DNA-binding protein is more active in strand displacement synthesis. Gene 4 hexamers containing even one subunit of a defective C terminus are defective in their interaction with T7 DNA polymerase.  相似文献   

20.
T A Cha  B M Alberts 《Biochemistry》1990,29(7):1791-1798
We have demonstrated previously that the template sequences 5'-GTT-3' and 5'-GCT-3' serve as necessary and sufficient signals for the initiation of new DNA chains that start with pentaribonucleotide primers of sequence pppApCpNpNpN or pppGpCpNpNpN, respectively. Normally, the complete T4 primosome, consisting of the T4 gene 41 (DNA helicase) and gene 61 (primase) proteins, is required to produce RNA primers. However, a high concentration of the 61 protein alone can prime DNA chain starts from the GCT sites [Cha, T.-A., & Alberts, B. M. (1986) J. Biol. Chem. 261, 7001-7010]. We show here that the 61 protein can catalyze a single-stranded DNA template-dependent reaction in which the dimers pppApC and pppGpC are the major products and much longer oligomers of various lengths are minor ones. Further addition of the 41 protein is needed to form a primosome that catalyzes efficient synthesis of the physiologically relevant pentaribonucleotides that are responsible for the de novo DNA chain starts on the lagging strand of a replication fork. The helicase activity of the 41 protein is necessary and sufficient to ensure a high rate and processivity of DNA synthesis on the leading strand [Cha, T.-A., & Alberts, B. M. (1989) J. Biol. Chem. 264, 12220-12225]. Coupling an RNA primase to this helicase in the primosome therefore coordinates the leading- and lagging-strand DNA syntheses at a DNA replication fork. Our experiments reveal that the addition of the T4 helix-destabilizing protein (the gene 32 protein) is required to confine the synthesis of RNA primers to those sites where they are used to start an Okazaki fragment, causing many potential priming sites to be passed by the primosome without triggering primer synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号