首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In a study of the evolution and distribution of avian retroviruses, we found avian sarcoma and leukosis virus (ASLV) gag genes in 26 species of galliform birds from North America, Central America, eastern Europe, Asia, and Africa. Nineteen of the 26 host species from whom ASLVs were sequenced were not previously known to contain ASLVs. We assessed congruence between ASLV phylogenies based on a total of 110 gag gene sequences and ASLV-host phylogenies based on mitochondrial 12S ribosomal DNA and ND2 sequences to infer coevolutionary history for ASLVs and their hosts. Widespread distribution of ASLVs among diverse, endemic galliform host species suggests an ancient association. Congruent ASLV and host phylogenies for two species of Perdix, two species of Gallus, and Lagopus lagopus and L. mutus also indicate an old association with vertical transmission and cospeciation for these ASLVs and hosts. An inference of horizontal transmission of ASLVs among some members of the Tetraoninae subfamily (grouse and ptarmigan) is supported by ASLV monophyletic groups reflecting geographic distribution and proximity of hosts rather than host species phylogeny. We provide a preliminary phylogenetic taxonomy for the new ASLVs, in which named taxa denote monophyletic groups.  相似文献   

2.
3.
The avian leukosis and sarcoma virus (ALSV) group comprises eight subgroups based on envelope properties. HPRS-103, an exogenous retrovirus recently isolated from meat-type chicken lines, is similar to the viruses of these subgroups in group antigen but differs from them in envelope properties and has been assigned to a new subgroup, J. HPRS-103 has a wide host range in birds, and unlike other nontransforming ALSVs which cause late-onset B-cell lymphomas, HPRS-103 causes late-onset myelocytomas. Analysis of the sequence of an infectious clone of the complete proviral genome indicates that HPRS-103 is a multiple recombinant of at least five ALSV sequences and one EAV (endogenous avian retroviral) sequence. The HPRS-103 env is most closely related to the env gene of the defective EAV-E51 but divergent from those of other ALSV subgroups. Probing of restriction digests of line 0 chicken genomic DNA has identified a novel group of endogenous sequences (EAV-HP) homologous to that of the HPRS-103 env gene but different from sequences homologous to EAV and E51. Unlike other replication-competent nontransforming ALSVs, HPRS-103 has an E element in its 3' noncoding region, as found in many transforming ALSVs. A deletion found in the HPRS-103 U3 EFII enhancer factor-binding site is also found in all replication-defective transforming ALSVs (including MC29, which causes rapid-onset myelocytomas).  相似文献   

4.
5.
Human retroviral sequences on the Y chromosome.   总被引:1,自引:0,他引:1       下载免费PDF全文
Novel endogenous human retroviral sequences were cloned by low-stringency hybridization, using the pol gene of endogenous human retrovirus 51-1. One clone, lambda NP-2, contained gag, pol, env, and long terminal repeat sequences related to the corresponding portions of clone 51-1 and the closely related full-length endogenous human retrovirus 4-1. The sequence of the env gene of NP-2 was 73% homologous to that of 4-1. Genomic Southern blots of male and female DNAs showed that NP-2 is located on the Y chromosome and that the Y chromosome also contains one other sequence closely related to the env and 3' flanking regions of NP-2. Conservation of flanking DNA suggests that the second Y chromosome copy of the NP-2 env sequence arose by gene duplication rather than provirus insertion.  相似文献   

6.
7.
8.
A complete endogenous type C viral genome has been isolated from a baboon genomic library. The provirus, Papio cynocephalus endogenous retrovirus (PcEV), is 8,572 nucleotides long, and 38 to 59 proviral copies per baboon genome are found. The PcEV provirus possesses the typical simple retroviral gene organization, including two long terminal repeats and genes encoding gag, pol, and env proteins. The open reading frames for gag-pol and env are complete but have premature stop codons or frameshift mutations. The primer binding site of PcEV is complementary to tRNAGly. The gag and pol genes of PcEV are closely related to those of the baboon endogenous virus (BaEV). The env coding region of PcEV is related to the env genes of type C retroviruses. This suggests that PcEV is one of the ancestors of BaEV contributing the type C gag-pol genome fragment to the type C/D recombinant virus BaEV. Earlier it was shown that another endogenous type D virus (simian endogenous retrovirus) provided the env gene for BaEV (A. C. van der Kuyl et al., J. Virol. 71:3666-3676, 1997).  相似文献   

9.
The nucleotide sequence of a full-length (8.8-kilobase) endogenous C-type human retroviral DNA (clone 4-1) is presented and compared with that of Moloney murine leukemia virus (MoMuLV) DNA. Colinearity of deduced amino acids of clone 4-1 with MoMuLV in the gag and pol regions was clearly evident, and overall amino acid homology in these regions was about 40%. Identification of the putative N terminus of gag and p30, the gag-pol junction, and the C terminus of pol could be established on the basis of sequence homology with MoMuLV. Unique characteristics of the endogenous human retroviral DNA included a tRNA Glu primer binding site separated from the 5' long terminal repeat by a pentanucleotide and a putative env sequence which does not appear to overlap the C terminus of pol and has virtually no homology with the env gene of known infectious retroviruses. Clone 4-1 represents a defective prototype of a human C-type retrovirus which integrated into the germ line some time in the distant past.  相似文献   

10.
11.
12.
13.
14.
15.
16.
We previously described an endogenous murine retrovirus, rv-DBA/2aged, isolated from an aged DBA/2 mouse. The previous report showed that a recombination which resulted in the replacement of Emv-3 gag sequences with gag sequences homologous to those found in the AKT-8 virus had taken place. This recombination allowed production of a competent virus from the defective Emv-3 locus. However, the extent of replacement of Emv-3 gag was not known. We report here the entire sequence for the gag gene of rv-DBA/2aged as well as the previously unsequenced 3' end of the Emv-3 gag gene. These data demonstrate that while sequences homologous to the entire gag gene fragment found in AKT-8 are represented in rv-DBA/2aged, the remainder of rv-DBA/2aged gag is not derived from Emv-3 but is a unique gag sequence. Furthermore, a complete comparison of env sequences shows that the env of rv-DBA/2aged is derived entirely from Emv-3. Additional data suggest that the recombination which led to production of the rv-DBA/2aged virus may be a common event in aging DBA/2 mice. Finally, comparison of the new sequences of Emv-3 with those of the Akv virus (also designated AKR-623 and Emv-11) and Emv-1 shows that this endogenous virus locus is very closely related to the other Emv loci at the nucleotide sequence level.  相似文献   

17.
A new D-type retrovirus originally designated SAIDS-D/Washington and here referred to as retrovirus-D/Washington (R-D/W) was recently isolated at the University of Washington Primate Center, Seattle, Wash., from a rhesus monkey with an acquired immunodeficiency syndrome and retroperitoneal fibromatosis. To better establish the relationship of this new D-type virus to the prototype D-type virus, Mason-Pfizer monkey virus (MPMV), we have purified and compared six structural proteins from each virus. The proteins purified from each D-type retrovirus include p4, p10, p12, p14, p27, and a phosphoprotein designated pp18 for MPMV and pp20 for R-D/W. Amino acid analysis and N-terminal amino acid sequence analysis show that the p4, p12, p14, and p27 proteins of R-D/W are distinct from the homologous proteins of MPMV but that these proteins from the two different viruses share a high degree of amino acid sequence homology. The p10 proteins from the two viruses have similar amino acid compositions, and both are blocked to N-terminal Edman degradation. The phosphoproteins from the two viruses each contain phosphoserine but are different from each other in amino acid composition, molecular weight, and N-terminal amino acid sequence. The data thus show that each of the R-D/W proteins examined is distinguishable from its MPMV homolog and that a major difference between these two D-type retroviruses is found in the viral phosphoproteins. The N-terminal amino acid sequences of D-type retroviral proteins were used to search for sequence homologies between D-type and other retroviral amino acid sequences. An unexpected amino acid sequence homology was found between R-D/W pp20 (a gag protein) and a 28-residue segment of the env precursor polyprotein of Rous sarcoma virus. The N-terminal amino acid sequences of the D-type major gag protein (p27) and the nucleic acid-binding protein (p14) show only limited amino acid sequence homology to functionally homologous proteins of C-type retroviruses.  相似文献   

18.
Sage grouse (Centrocercus urophasianus) from southwestern Colorado and southeastern Utah (United States) are 33% smaller than all other sage grouse and have obvious plumage and behavioural differences. Because of these differences, they have been tentatively recog-nized as a separate 'small-bodied' species. We collected genetic evidence to further test this proposal, using mitochondrial sequence data and microsatellite markers to determine whether there was gene flow between the two proposed species. Significant differences in the distribution of alleles between the large- and small-bodied birds were found in both data sets. Analysis of molecular variance (AMOVA) revealed that 65% of the variation in mitochondrial DNA (mtDNA) haplotypes could be explained by the large- vs. small-bodied distinction. Genetic distances and neighbour-joining trees based on allelic frequency data showed a distinct separation between the proposed species, although cladistic analysis of the phylogenetic history of the mitochondrial sequence haplotypes has shown a lack of reciprocal monophyly. These results further support the recognition of the small-bodied sage grouse as a distinct species based on the biological species concept, providing additional genetic evidence to augment the morphological and behavioural data. Furthermore, small-bodied sage grouse had much less genetic variation than large-bodied sage grouse, which may have implications for conservation issues.  相似文献   

19.
In view of the concern over potential infection hazards in the use of porcine tissues and organs for xenotransplantation to humans, we investigated the diversity of porcine endogenous retrovirus (PERV) genomes in the DNA of domestic pigs and related species. In addition to the three known envelope subgroups of infectious gamma retroviruses (PERV-A, -B, and -C), classed together here as PERV group gamma 1, four novel groups of gamma retrovirus (gamma 2 to gamma 5) and four novel groups of beta retrovirus (beta 1 to beta 4) genomes were detected in pig DNA using generic and specific PCR primers. PCR quantification indicated that the retroviral genome copy number in the Landrace x Duroc F(1) hybrid pig ranged from 2 (beta 2 and gamma 5) to approximately 50 (gamma 1). The gamma 1, gamma 2, and beta 4 genomes were transcribed into RNA in adult kidney tissue. Apart from gamma 1, the retroviral genomes are not known to be infectious, and sequencing of a small number of amplified genome fragments revealed stop codons in putative open reading frames in several cases. Analysis of DNA from wild boar and other species of Old World pigs (Suidae) and New World peccaries (Tayassuidae) showed that one retrovirus group, beta 2, was common to all species tested, while the others were present among all Old World species but absent from New World species. The PERV-C subgroup of gamma1 genomes segregated among domestic pigs and were absent from two African species (red river hog and warthog). Thus domestic swine and their phylogenetic relatives harbor multiple groups of hitherto undescribed PERV genomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号