首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.  相似文献   

3.
4.
The actinorhizal bacterium Frankia expresses nitrogenase and can therefore convert molecular nitrogen into ammonia and the by-product hydrogen. However, nitrogenase is inhibited by oxygen. Consequently, Frankia and its actinorhizal hosts have developed various mechanisms for excluding oxygen from their nitrogen-containing compartments. These include the expression of oxygen-scavenging uptake hydrogenases, the formation of hopanoid-rich vesicles, enclosed by multi-layered hopanoid structures, the lignification of hyphal cell walls, and the production of haemoglobins in the symbiotic nodule. In this work, we analysed the expression and structure of the so-called uptake hydrogenase (Hup), which catalyses the in vivo dissociation of hydrogen to recycle the energy locked up in this ‘waste’ product. Two uptake hydrogenase syntons have been identified in Frankia: synton 1 is expressed under free-living conditions while synton 2 is expressed during symbiosis. We used qPCR to determine synton 1 hup gene expression in two Frankia strains under aerobic and anaerobic conditions. We also predicted the 3D structures of the Hup protein subunits based on multiple sequence alignments and remote homology modelling. Finally, we performed BLAST searches of genome and protein databases to identify genes that may contribute to the protection of nitrogenase against oxygen in the two Frankia strains. Our results show that in Frankia strain ACN14a, the expression patterns of the large (HupL1) and small (HupS1) uptake hydrogenase subunits depend on the abundance of oxygen in the external environment. Structural models of the membrane-bound hydrogenase subunits of ACN14a showed that both subunits resemble the structures of known [NiFe] hydrogenases (Volbeda et al. 1995), but contain fewer cysteine residues than the uptake hydrogenase of the Frankia DC12 and Eu1c strains. Moreover, we show that all of the investigated Frankia strains have two squalene hopane cyclase genes (shc1 and shc2). The only exceptions were CcI3 and the symbiont of Datisca glomerata, which possess shc1 but not shc2. Four truncated haemoglobin genes were identified in Frankia ACN14a and Eu1f, three in CcI3, two in EANpec1 and one in the Datisca glomerata symbiont (Dg).  相似文献   

5.
Physical maps for Frankia strains CcI3, EAN1pec and EuI1c chromosomes were constructed by the use of macrorestriction analysis and pulsed-field gel electrophoresis (PFGE). The restriction enzymes Ase I, Pme I, Swa I and Ssp I were used to cut the Frankia chromosome into a limited number of large fragments and for double digestions. The genomes sizes, as determined by the addition of the estimated fragment sizes, were 5430 ± 35 kb, 9101 ± 109 kb and 8105 ± 842 kb for strains CcI3, EAN1pec and EuI1c, respectively. A complete physical map was achieved by the analysis of PFGE for the single and double digestions and by two-dimensional PFGE to determine doublets and overlapping fragments. For strain EuI1c, a partial genetic map was also constructed by positioning the 16S rRNA, gln II, gln A and hbo O genes on the physical map. PFGE analysis of DNA with and without proteinase K treatment together with the other results suggested a circular genome.  相似文献   

6.
Diversity and evolution of hydrogenase systems in rhizobia   总被引:1,自引:0,他引:1  
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.  相似文献   

7.
8.
9.
Five free-living Frankia strains isolated from Casuarina were investigated for occurrence of hydrogenase activity. Nitrogenase activity (acetylene reduction) and hydrogen evolution were also evaluated. Acetylene reduction was recorded in all Frankia strains. None of the Frankia strains had any hydrogenase activity when grown on nickel-depleted medium and they released hydrogen in atmospheric air. After addition of nickel to the medium, the Frankia strains were shown to possess an active hydrogenase, which resulted in hydrogen uptake but no hydrogen evolution. The hydrogenase activity in Frankia strain KB5 increased from zero to 3.86 μ mol H2 (mg protein)−1 h−1 after addition of up to 1.0 μ M Ni. It is likely that the hydrogenase activity could be enhanced even more as a response on further addition of Ni. It is indicated in this study that absence of hydrogenase activity in free-living Frankia isolated from Casuarina spp. is due to nickel deficiency. Frankia living in symbiosis with Casuarina spp. show hydrogenase activity. Therefore, the results also indicate that the hydrogenase to some extent is regulated by the host plant and/or that the host plant supplies the symbiotic microorganism with nickel. Moreover, the result shows that this Frankia is somewhat different from Frankia isolated from Alnus incana and Comptonia peregrina ., i.e., Frankia isolated from A. incana and C. peregrina showed a small hydrogen uptake activity even without addition of nickel.  相似文献   

10.
Frankia alni strain ACN14a’s genome was scanned for the presence of determinants involved in interactions with its host plant, Alnus spp. One such determinant type is lectin, proteins that bind specifically to sugar motifs. The genome of F. alni was found to contain 7 such lectin-coding genes, five of which were of the ricinB-type. The proteins coded by these genes contain either only the lectin domain, or also a heat shock protein or a serine-threonine kinase domain upstream. These lectins were found to have several homologs in Streptomyces spp., and a few in other bacterial genomes among which none in Frankia EAN1pec and CcI3 and two in strain EUN1f. One of these F. alni genes, FRAAL0616, was cloned in E. coli, fused with a reporter gene yielding a fusion protein that was found to bind to both root hairs and to bacterial hyphae. This protein was also found to modify the dynamics of nodule formation in A. glutinosa, resulting in a higher number of nodules per root. Its role could thus be to permit binding of microbial cells to root hairs and help symbiosis to occur under conditions of low Frankia cell counts such as in pioneer situations.  相似文献   

11.
Frankia alni induces root nodules on Alnus , in which the bacterium differentiates into nitrogen (N)-fixing cells called vesicles. In culture, F. alni also undergoes major morphological changes as it alternates between N-replete and N-fixing conditions. Lack of biologically available N induces the synthesis of vesicles in which nitrogenase is protected from molecular oxygen by a thick lipid hopanoid envelope. Very little is known about the molecular basis of Frankia –host interaction as well as Frankia cell differentiation. The recent determination of the complete genome sequence of F. alni strain ACN14a has permitted us to characterize its proteome, particularly in the extracellular compartment, which could be involved in Frankia –host interaction, and in the switch from N-replete to N-fixing conditions. To that end, 126 bacterial proteins were analyzed by two-dimensional protein gel electrophoresis and identified by matrix-assisted laser desorption/ionization time of flight fingerprinting using a F. alni proteome database. Interestingly, the extracellular fraction contains some glycolytic enzymes lacking secretion signals, already reported to be extracellularly localized in some streptococci, as well as some abundant stress-resistance proteins. As expected, several proteins involved in N assimilation and oxidative defense system were upregulated in F. alni grown under N-fixing vs N-replete conditions. Furthermore, two Raf kinase inhibitor protein homologs that could play a role in cellular signaling, and a hemoglobin-like protein HbN that could be involved in detoxification of nitric oxide were also upregulated. More surprising, a succinate dehydrogenase was strongly downregulated, which could be linked to the need of pyruvate for the biosynthesis of hopanoids or to reduced oxygen diffusion in vesicles.  相似文献   

12.
13.
The structural genes (hupSL) of the membrane-bound NiFe-containing H2-uptake hydrogenase (Hup) of Azotobacter chroococcum were identified by oligonucleotide screening and sequenced. The small subunit gene (hupS) encodes a signal sequence of 34 amino acids followed by a 310-amino-acid, 34156D protein containing 12 cysteine residues. The large subunit gene (hupL) overlaps hupS by one base and codes for a predicted 601-amino-acid, 66433D protein. There are two regions of strong homology with other Ni hydrogenases: a Cys-Thr-Cys-Cys-Ser motif near the N-terminus of HupS and an Asp-Pro-Cys-Leu-Ala-Cys motif near the carboxy-terminus of HupL. Strong overall homology exists between Azotobacter, Bradyrhizobium japonicum and Rhodobacter capsulatus Hup proteins but less exists between the Azotobacter proteins and hydrogenases from Desulfovibrio strains. Mutagenesis of either hupS or hupL genes of A. chroococcum yielded Hup- phenotypes but some of these mutants retained a partial H2-evolving activity. Hybridization experiments at different stages of gene segregation confirmed the multicopy nature of the Azotobacter genome.  相似文献   

14.
The first gene cluster encoding for a membrane bound [NiFe] hydrogenase from a methanotroph, Methylococcus capsulatus (Bath), was cloned and sequenced. The cluster consisted of the structural genes hupS and hupL and accessory genes hupE, hupC and hupD. A DeltahupSL deletion mutant of Mc. capsulatus was constructed by marker exchange mutagenesis. Membrane associated hydrogenase activity disappeared. The membrane associated hydrogenase appeared to have a hydrogen uptake function in vivo.  相似文献   

15.
Atractyloside and carboxyatractyloside partially inhibited nitrogenase activity (acetylene reduction) by isolated vesicles of Frankia strain EAN1pec. Extracts of disrupted vesicles showed nitrogenase activity that was not affected by the inhibitors. The vesicles accumulated ATP by an atractyloside-sensitive mechanism. This inhibition of ATP uptake was reversed when vesicles were permeabilized by detergent. Uptake of ATP was inhibited by excess ATP and ADP, but not AMP or adenosine, and by a calcium-dependent ATPase inhibitor. Uptake was stimulated by calcium ions. Accumulation of ATP was accompanied by release of ADP and AMP from the vesicles. The ATP taken up by vesicles and cells grown with N2 as the nitrogen source was found in the corresponding cell pools only as ATP. The data indicate activity of an ATP-ADP translocase system in vesicles of this organism. The role of ATP translocation in the symbiosis between Frankia strain EAN1pec and plant root nodules is discussed.  相似文献   

16.
Immunogold localization of hydrogenase in free-living Frankia CpI1   总被引:1,自引:0,他引:1  
Abstract The free-living Frankia strain CpI1 cultured under nitrogen-fixing and non-nitrogen-fixing conditions was investigated for occurrence of hydrogenase protein by Western blots. Transmission electron microscopy and immunocytological labelling were used to study the distribution of hydrogenase in the Frankia strain.
Western immunoblots revealed that a 72-kDa protein in the Frankia strain CpI1 was immunologically related to the large subunit of a dimeric hydrogenase purified from Alcaligenes latus . Immunolocalization showed that the hydrogenase protein is located both in vesicles and hyphae in Frankia strain CpI1 grown in a nitrogen-free medium. Earlier reports that nitrogenase is localized in the vesicles [1,2], together with this finding, point out a possible role for hydrogenase in increasing relative efficiency of nitrogen fixation. In CpI1 grown in media containing nitrogen (lacking vesicles), the enzyme was evenly distributed in the hyphae. The impact of this result has to be further analysed.  相似文献   

17.
Two-dimensional (2-D) polyacrylamide gel electrophoresis was used to detect proteins induced in Frankia sp. strain ACN14a-tsr by root exudates of its symbiotic host, Alnus glutinosa. The 5 most prominent proteins were purified from 2-D gels and characterized by N-terminal sequencing. All of these proteins had a high percentage of similarity with known stress proteins. One protein match was the Fe superoxide dismutase (Fe-SOD), another was a tellurite resistance protein (Ter), the third was a bacterioferritin comigratory protein (Bcp); and two matches, differing only by their isoelectric point, were the same small heat shock protein (Hsp), a major immune reactive protein found in mycobacteria. This suggests that the symbiotic microorganism Frankia, first responds with a normal stress response to toxic root products of its symbiotic host plant. To confirm its identity, the gene corresponding to the Fe-SOD protein, sodF was isolated from a genomic library by a PCR-approach and sequenced. It is the first stress response gene characterized in Frankia.  相似文献   

18.
19.
Symbiotic and free-living Frankia were investigated for correlation between hydrogenase activities (in vivo/in vitro assays) and for occurrence and localization of hydrogenase protein by Western blots and immuno-gold localization, respectively. Freshly prepared nodule homogenates from the symbiosis between Alnus incana and a local source of Frankia did not show any detectable in vivo or in vitro hydrogenase uptake activity, as also has been shown earlier. However, a free-living Frankia strain originally isolated from these nodules clearly showed both in vivo and in vitro hydrogenase activity, with the latter being approximately four times higher. Frankia strain Cpl1 showed hydrogen uptake activity both in symbiosis with Alnus incana and in a free-living state. Western blots on the different combinations of host plants and Frankia strains used in the present study revealed that all the Frankia sources contained a hydrogenase protein, even the local source where no in vivo or in vitro activity could be measured. The 72 kilodalton protein found in the symbiotic Frankia as well as in the free-living Frankia strains were immunologically related to the large subunit of a dimeric hydrogenase purified from Alcaligenes latus. Recognitions to polypeptides with molecular masses of about 41 and 19.5 kilodaltons were also observed in Frankia strain UGL011101 and in the local source of Frankia, respectively. Immunogold localization of the protein demonstrated that in both the symbiotic state and the free-living nitrogen-fixing Frankia, the protein is located in vesicles and in hyphae. The inability to measure any uptake hydrogenase activity is therefore not due to the absence of hydrogenase enzyme. However, the possibility of an inactive hydrogenase enzyme cannot be ruled out.  相似文献   

20.
Three different strains of Frankia , the pure cultures AvcI1 and CpI1 and a local strain (crushed nodule inoculum), were compared in symbiosis with one clone of Alnus incana (L.) Moench. Hydrogen metabolism, nitrogenase (EC 1.7.99.2) activity and relative efficiency of nitrogenase were studied as well as growth and nitrogen content of the plants. The local Frankia strain showed no measurable hydrogen uptake but high H2-evolution. No H2-evolution was detected in Frankia AvcI1 because of its hydrogenase activity. CpI1 also had hydrogenase, although only a very small H2-evolution was detected at the end of the growth period. Hydrogenase activity was detected both in pure cultures and nodule homogenates of CpI1 and AvcI1. Growth, biomass production and nitrogen content were highest in alders inoculated with Frankia AvcI1 while the lowest values were found for alders living in symbiosis with the local Frankia strain. The presence of hydrogenase in Frankia seemed to be benefical for growth and biomass production in the alders. However, the strains also differed with respect to spore formation. The local strain, but not AvcI1 and CpI1, formed spores in the root nodules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号