首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. For more than 30 years many studies have been carried out concerning rhythms with periods approaching 24 hr (circadian rhythms). 2. The latter have been demonstrated as resulting from environmental 24 hr synchronizers (zeitgebers), but they usually persist in the absence of a 24 hr synchronization, which proves their endogenous nature. 3. Biological rhythms with periods less than 20 hr (ultradian rhythms) and particularly those approaching 1 hr (circahoral rhythms) have been determined: for motility, rest-activity, sleep phases, endocrine secretions and other physiological functions. 4. These ultradian and circahoral rhythms have been found in rodents, birds, monkeys and humans. 5. Existing at all stages of ontogeny, they have been proved to be endogenous and species and strain specific. 6. As these ultradian rhythms can be influenced by environmental factors and sometimes by circadian rhythms they are not truly periodic, so therefore cannot be computed by the usual processes of mathematical time analysis.  相似文献   

2.
We studied the influence of three types of breathing [spontaneous, frequency controlled (0.25 Hz), and hyperventilation with 100% oxygen] and apnea on R-R interval, photoplethysmographic arterial pressure, and muscle sympathetic rhythms in nine healthy young adults. We integrated fast Fourier transform power spectra over low (0.05-0.15 Hz) and respiratory (0.15-0.3 Hz) frequencies; estimated vagal baroreceptor-cardiac reflex gain at low frequencies with cross-spectral techniques; and used partial coherence analysis to remove the influence of breathing from the R-R interval, systolic pressure, and muscle sympathetic nerve spectra. Coherence among signals varied as functions of both frequency and time. Partialization abolished the coherence among these signals at respiratory but not at low frequencies. The mode of breathing did not influence low-frequency oscillations, and they persisted during apnea. Our study documents the independence of low-frequency rhythms from respiratory activity and suggests that the close correlations that may exist among arterial pressures, R-R intervals, and muscle sympathetic nerve activity at respiratory frequencies result from the influence of respiration on these measures rather than from arterial baroreflex physiology. Most importantly, our results indicate that correlations among autonomic and hemodynamic rhythms vary over time and frequency, and, thus, are facultative rather than fixed.  相似文献   

3.
Sex differences have been identified in a variety of circadian rhythms, including free-running rhythms, light-induced phase shifts, sleep patterns, hormonal fluctuations, and rates of reentrainment. In the precocial, diurnal rodent Octodon degus, sex differences have been found in length of free-running rhythm (tau), phase response curves, rates of reentrainment, and in the use of social cues to facilitate reentrainment. Although gonadal hormones primarily organize circadian rhythms during early development, adult gonadal hormones have activational properties on various aspects of circadian rhythms in a number of species examined. Gonadectomy of adult female O. degus did not influence tau, phase angle of entrainment, or activity patterns in previous experiments. The present experiment examined the role of gonadal hormones in adult male degus' circadian wheel-running rhythms. We predicted that male gonadal hormones would have an activational effect on some aspects of circadian rhythms, particularly those in which we see sex differences. Phase angles of entrainment, tau, length of the active period (alpha), maximum and mean activity levels, and activity amplitude were examined for intact and castrated males housed in LD 12:12. Responses to light pulses while housed in constant darkness (DD) were also compared. Castration had no significant effect on tau or light-induced phase shifts. However, castration significantly increased phase angle of entrainment and decreased activity levels. The data indicate that adult gonadal steroids are not responsible for the sex differences in endogenous circadian mechanisms of O. degus (tau, PRC), although they influence activity level and phase angle of entrainment. This is most likely due to masking properties of testosterone, similar to the activity-increasing effects of estrogen during estrus in O. degus females.  相似文献   

4.
Rhythms of resting fluctuations of circulatory parameters in man reveal a considerable interindividual variability. We posed the question whether these rhythms are long-term individual characteristics. In nine healthy subjects aged 19-23 years the blood pressure and the finger blood flow were recorded by indirect continuous methods, together with cardiac intervals and respiratory movements. These recordings were repeated in each subject after 1 year. The power spectra of all the parameters recorded were calculated for 5-min periods. The shape of spectra and the division of power into four ranges of frequencies were compared to the spectra recorded after 1 year in each subject and the degree of similarity was evaluated by means of correlation analysis. The average measures of similarity (correlation coefficients) were high, cardiac intervals 0.527, systolic pressure 0.782, pulse pressure 0.755, diastolic pressure 0.709, mean blood pressure 0.673, blood flow 0.818 and respiration 0.627. All these values were higher than values obtained by comparison of spectra of two individuals chosen randomly. The differences were statistically significant for cardiac intervals (Wilcoxon test: P less than 0.05), pulse pressure (P less than 0.05) and respiration (P less than 0.01). These results have shown that interindividual variability of circulatory and respiratory spectra was greater than the intraindividual one. The resting circulatory rhythms are very stable individual features.  相似文献   

5.
Continuous recordings of respiratory gas exchanges of various laboratory endotherm vertebrate species, which have either a nocturnal (mouse, rat) or diurnal (monkey, quail, chicken) or equivocal (guinea-pig) maximal activity, kept under controlled environmental conditions of temperature, humidity, ventilation and provided with food and water ad libitum, show ultradian oscillations of mean and low frequencies (1 less than f less than 35 c.day-1). Harmonic analysis was used to assess periodic or random ultradian variations and to compute amplitudes and phases of these oscillations when these vertebrates were submitted to a light (100 lx) and dark circadian alteration (LD 12:12). Spectral analysis shows that a 100-lx continuous illumination or continuous darkness decreases circadian respiratory rhythms and increases these ultradian respiratory oscillations.  相似文献   

6.
The circadian variations in plasma progesterone (P) and LH concentrations were investigated in six women, aged 23-40 years. All were studied in the mid-luteal phase (7 +/- 2 days after LH mid-cycle surge). Experiments were conducted in autumn and in spring. Blood samples were obtained every 15 min for 24 hr. Plasma P and LH concentrations were measured by RIA. Each subject's time-series was analysed using three methods; visual inspection (chronogram), spectral analysis to estimate component periods of rhythms (tau) and cosinor analysis to quantify the rhythms parameters. Marked temporal variations in plasma P concentration were observed in each subject. The maximal variations over a 24-hr period, ranged between 13-58.5 mmol/l. Differences related to sampling time were statistically validated by ANOVA (p less than 0.00001). Significant harmonic periods were detected by spectral analysis but differed among subjects. In all subjects but one, a circadian rhythm was detected. The acrophase location was similar (about 0700 hr) in the four subjects studied in autumn, but ranged from 1940 to 0320 hr in those studied in spring. An ultradian rhythm with tau = 8 hr was also validated in six time-series with similar acrophases (about 0200, 1000, and 1800 hr). Cosinor analysis of pooled data revealed that the 24-hr, 12-hr, and 8-hr rhythms were statistically significant (p = 0.001) in autumn. algebraic sum of these three cosine functions yielded a circadian waveform with peak-times occurring near 0300 and 1130 hr and a trough-time about 2200 hr. In spring, the circadian pattern appeared quite different, and peak-times were found near 0700 and 2000 hr, and trough-times near 0300 and 1500 hr. Furthermore, the 24-hr mean of P was higher in autumn (28.9 +/- 0.4 nmol/l) than in spring (17.2 +/- 0.4 nmol/l), p from ANOVA less than 0.00001. The evidence for a similar circadian LH pattern is not as strong. Seasonal, circadian and ultradian rhythms characterize the physiologic time structure of plasma P concentration in mid-luteal phase.  相似文献   

7.
The dominant frequencies in the human electroencephlogram (EEG) are 8–13 Hz (Alpha), 4–7 Hz (Theta), less than 4 Hz (Delta), and greater than 13 Hz (Beta). The conventional explanation of the mechanism for these dominant rhythms involves the effect of electrical activity i n the thalamus on the cortical synaptic potentials that are recorded in an EEG (1,2). Although electrical activity in the thalamus is of prime importance in determining what is recorded Ly the EEG, it is not known why the dominant rhythms recorded are of those specific frequencies. These dominant frequencies may be related through evolution to some aspect of the environment. This paper is devoted to a consideration of the possible relation between the brain's electrical activity and external electromagnetic fields.  相似文献   

8.
Six very premature babies (born at 26–28 weeks gestational age) have been studied in hospital for 11–17 weeks, while in intensive care and in an incubator. Apart from suffering occasionally from the neonatal disorders of haemolytic jaundice and ‘respiratory distress of the newborn’, the babies were healthy and developed normally. Initially, the babies were continuously fed intravenously, and the lighting in the ward was on continuously. Routine care was given round the clock. When their medical condition permitted it, the babies were moved in their incubator to an adjacent ward, where they took frequent (2–4 hourly) small meals by mouth, the lighting was dimmed at night, and routine care tended to be given more in the daytime. Hourly recordings of insulated skin temperature were taken throughout the study, and it is the detection of rhythmicity in these measurements that has been the subject of the present study. The methods used were Phase-weighted Stacks, Phasor Walkout and Power Spectral Analysis. These methods have previously been used mainly in geophysical studies, and their value is that they can detect weak signals in noisy data and do not assume a particular waveform of any signal. Circadian rhythmicity was found in all babies for much of the time that were in the constant environment provided by the incubator. Ultradian rhythms were sometimes present also, but they were shorter-lived, and showed a wide range of changing periods, generally in excess of 8 h. When the babies were being treated for jaundice or respiratory distress, there was a tendency for the circadian rhythms to become weaker and for a broader spectrum of ultradian periods to appear. Placing babies in the 12 h : 12 h light : dark environment provided by the ward, and instituting feeding by mouth, had, in most cases, only modest effects upon either circadian or ultradian rhythms. Thus, circadian rhythms continued (but generally with a period not exactly equal to 24 h), and ultradian rhythms, when present, often did not show periods that could be related easily to feeding or care-giving. These results are discussed in terms of evidence for endogenous and exogenous origins of the observed rhythms, and of theories that have postulated the relationship between circadian and ultradian rhythms. It is concluded that the results from the present analyses are difficult to reconcile with the view that circadian rhythms develop from interactions between ultradian oscillators. We suggest that they indicate a matu-ration of the circadian system as a consequence of increasing associations between the circadian elements that are present in the suprachiasmatic nuclei and in other oscillators of the circadian system. The new analytical methods used here also indicate that the results obtained from time-frequency analysis depend to some extent upon the method used.  相似文献   

9.
Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.  相似文献   

10.
In the mouse, activity is precisely timed by the circadian clock and is normally most intense in the early subjective night. Since vigorous activity (e.g., wheel running) is thought to induce phase shifts in rodents, the temporal placement of daily exercise/activity could be a determinant of observed circadian rhythm period. The relationship between spontaneous running-wheel activity and the circadian period of free-running rhythms was studied to assess this possibility. With ad libitum access to a running wheel, mice exhibited a free-running period (tau) of 23.43 +/- 0.08 hr (mean +/- SEM). When running wheels were locked, tau increased (23.88 +/- 0.04 hr, p less than 0.03), and restoration of ad libitum wheel running again produced a shorter period (tau = 23.56 +/- 0.06 hr, p less than 0.05). A survey of free-running activity patterns in a population of 100 mice revealed a significant correlation between the observed circadian period and the time of day in which spontaneous wheel running occurred (r = 0.7314, p less than 0.0001). Significantly shorter periods were observed when running was concentrated at the beginning of the subjective night (tau = 23.23 +/- 0.04), and longer periods were observed if mice ran late in the subjective night (tau = 23.89 +/- 0.04), F (1, 99) = 34.96, p less than 0.0001. It was previously believed that the period of the circadian clock was primarily responsive to externally imposed tonic or phasic events. Systematic influences of spontaneous exercise on tau demonstrate that physiological and/or behavioral determinants of circadian timekeeping exist as well.  相似文献   

11.
By evolutionary adaptation to the regular day-night changes in environmental conditions, most organisms have acquired a temporal programme which matches the 24-h day. It rests on periodic processes which have the characteristics of self-sustaining oscillations, and which, in constant conditions, free-run with periods slightly deviating from 24 h. When entrained to 24 h, these circadian rhythms can be used by the organism as a clock for temporal orientation, e.g. in the occupation of one of the temporal niches provided by the environment or in the coordination of activities among individuals and species. The circadian clock also provides the basis for using the sun as a compass in spatial orientation, and for the recognition of the time of day as exemplified by the time sense in honey bees. Within the human organism, almost every function is modulated in a circadian fashion. Usually, all rhythms keep a distinct phase-relationship t to each other, providing a high degree of temporal order within the organism. When living in an isolation unit without time cues, most subjects develop free-running rhythms with periods close to 25 h in all functions. Sometimes, however, the sleep-wake cycle is lengthened to 30 h and more, or shortened to less than 22 h. In those instances, other rhythms such as that of body temperature become uncoupled from the sleep-wake cycle and continue to free-run with a period of about 25 h. During such states of ‘internal desynchronization’, subjects can be awake continuously for about 32 h, and sleep without interruption for 16 h. Nevertheless, they experience their ‘days’ as equal to 24 h. This is due to a profound change in time estimation: the intervals of 1-h estimates made by the subject are positively correlated with the duration of wakefulness. In contrast, short-time estimates (in the range of seconds) remain unaffected by desynchronization, indicating that short- and long-time estimates are based on different mechanisms.  相似文献   

12.
The recording over several days of the respiratory gases of groups of different laboratory vertebrates (mice, rats, quails), placed in a chamber with controlled ventilation, and in standardized environmental conditions of temperature, humidity, light, noise and feeding, shows ultradian (tau less than 24 hr) and circadian (tau congruent to 24 hr) rhythms. A simple variance analysis method shows periodic carbon dioxide changes, due to different environmental stimuli. Societal, light, acoustical, carbon monoxide and starvation challenges are given as examples. This technique enables us quickly to collect, on a great number of animals, data which correspond to societal behavior changes peculiar to the considered species.  相似文献   

13.
This review discusses the ways in which the circadian rhythms of older people are different from those of younger adults. After a brief discussion of clinical issues, the review describes the conventional wisdom regarding age-related changes in circadian rhythms. These can be summarized as four assertions regarding what happens to people as they get older: 1) the amplitude of their circadian rhythms reduces, 2) the phase of their circadian rhythms becomes earlier, 3) their natural free-running period (tau) shortens, and 4) their ability to tolerate abrupt phase shifts (e.g., from jet travel or night work) worsens. The review then discusses the empirical evidence for and against these assertions and discusses some alternative explanations. The conclusions are that although older people undoubtedly have earlier circadian phases than younger adults, and have more trouble coping with shift work and jet lag, evidence for the assertions about rhythm amplitude and tau are, at best, mixed.  相似文献   

14.
Chronobiology is that branch of science that objectively explores and quantifies mechanisms of biological time structure, including the important rhythmic manifestations of life. It is the study of biological rhythms. This paper introduces chronobiology and some of its vocabulary, principles, and techniques. A circadian rhythm is a regularly repetitive, quantitative physiological change with a period of about 24 hr (20-28), but the spectrum of rhythms includes those with periods less than 20 hr (ultradian) and longer than 28 hr (infradian). These rhythms are ubiquitous among the eukaryotes, innate and endogenous; their periods are precisely controlled by synchronizers in the environment. Rhythms can be manipulated by altering their synchronizers or by introducing more dominant ones. When organisms are removed from their environment and placed in constant conditions, rhythms revert to their natural frequencies and free-run. All of an organism's rhythms operate simultaneously, but their peaks and troughs do not necessarily occur at the same time. There are rhythms in susceptibility to drugs; a fixed dose may have a therapeutic effect at one point along the 24 hr time scale and a harmful one at another. Knowledge of these rhythms can be important when designing experimental or treatment protocols and interpreting results. Examples are provided to show that single-time-point sampling can lead to erroneous results, unless biological periodicity is taken into consideration.  相似文献   

15.
Animals organize their lives around circannual and circadian rhythms, but little is known of their use of much shorter intervals. In the laboratory, some animals can learn the specific duration (seconds or minutes) between periods of food access. It has been supposed that wild nectarivores, such as hummingbirds, might also learn short time intervals so as to avoid revisiting emptied flowers until the nectar has been replenished. We provided free-living, territorial rufous hummingbirds each with eight artificial flowers containing sucrose solution. Four flowers were refilled 10 min after the bird emptied them, and the other four were refilled 20 min after being emptied. Throughout the day, birds revisited the 10 min flowers significantly sooner than they revisited the 20 min flowers, and return visits to the flowers matched their refill schedules. Hummingbirds remembered the locations and timing of eight rewards, updating this information throughout the day. Not only is this the first time that this degree of timing ability has been shown in wild animals, but these hummingbirds also exhibit two of the fundamental aspects of episodic-like memory (where and when), the kind of memory for specific events often thought to be exclusive to humans.  相似文献   

16.
Six very premature babies (born at 26-28 weeks gestational age) have been studied in hospital for 11-17 weeks, while in intensive care and in an incubator. Apart from suffering occasionally from the neonatal disorders of haemolytic jaundice and 'respiratory distress of the newborn', the babies were healthy and developed normally. Initially, the babies were continuously fed intravenously, and the lighting in the ward was on continuously. Routine care was given round the clock. When their medical condition permitted it, the babies were moved in their incubator to an adjacent ward, where they took frequent (2-4 hourly) small meals by mouth, the lighting was dimmed at night, and routine care tended to be given more in the daytime. Hourly recordings of insulated skin temperature were taken throughout the study, and it is the detection of rhythmicity in these measurements that has been the subject of the present study. The methods used were Phase-weighted Stacks, Phasor Walkout and Power Spectral Analysis. These methods have previously been used mainly in geophysical studies, and their value is that they can detect weak signals in noisy data and do not assume a particular waveform of any signal. Circadian rhythmicity was found in all babies for much of the time that were in the constant environment provided by the incubator. Ultradian rhythms were sometimes present also, but they were shorter-lived, and showed a wide range of changing periods, generally in excess of 8 h. When the babies were being treated for jaundice or respiratory distress, there was a tendency for the circadian rhythms to become weaker and for a broader spectrum of ultradian periods to appear. Placing babies in the 12 h : 12 h light : dark environment provided by the ward, and instituting feeding by mouth, had, in most cases, only modest effects upon either circadian or ultradian rhythms. Thus, circadian rhythms continued (but generally with a period not exactly equal to 24 h), and ultradian rhythms, when present, often did not show periods that could be related easily to feeding or care-giving. These results are discussed in terms of evidence for endogenous and exogenous origins of the observed rhythms, and of theories that have postulated the relationship between circadian and ultradian rhythms. It is concluded that the results from the present analyses are difficult to reconcile with the view that circadian rhythms develop from interactions between ultradian oscillators. We suggest that they indicate a matu-ration of the circadian system as a consequence of increasing associations between the circadian elements that are present in the suprachiasmatic nuclei and in other oscillators of the circadian system. The new analytical methods used here also indicate that the results obtained from time-frequency analysis depend to some extent upon the method used.  相似文献   

17.
THE OCCURRENCE AND FUNCTIONS OF ULTRADIAN RHYTHMS   总被引:1,自引:0,他引:1  
Ultradian oscillations with periods between 5 min and 4 h have been described in cell-free extracts, single-celled eukaryotes, cultured cells and embryos. Whereas some of these potentially oscillatory systems (e.g. glycolysis) may only exhibit this type of behaviour rarely if at all in vivo , other ultradian oscillators in lower eukaryotes are rhythms and probably have timekeeping functions. Rhythms with ultradian periods of 10 min to 20 h in oxygen consumption and carbon dioxide production have also been studied in endotherm animals: these rhythms may be modified by variations of environmental parameters and by circadian and infradian synchronizers. Interspecies and interstrain differences strongly suggest that these rhythms are endogenous and have a genetic origin. We suggest that the temporal organization of biochemical and physiological processes facilitates optimization of thermodynamic maintenance of the organism within the random fluctuations of its physicochemical environment and contributes to genetic selection.  相似文献   

18.
Age-related changes in the intrinsic circadian period (tau) have been hypothesized to account for sleep symptoms in the elderly such as early morning awakening. The authors sought to determine whether the aging process produced quantifiable differences in the tau of totally blind men who had free-running circadian rhythms. The melatonin onset was used as the indicator of circadian phase. Melatonin rhythms had been characterized about a decade previously when the participants were 38 +/- 6 (SD) years old. Both previous and current assessments of tau were derived from at least 3 serial measurements of the 24-h melatonin profile from which the melatonin onset was determined. All 6 participants exhibited a longer tau in the 2nd assessment (mean increase +/- SD of 0.13 +/- 0.08 h; p < 0.01). Four participants exhibited differences in tau with nonoverlapping 95% confidence intervals. The results do not support the commonly held view that tau shortens during human aging. On the contrary, tau appears to slightly, but significantly, lengthen during at least 1 decade in midlife.  相似文献   

19.
A new type of miniature ultrasonic telemetry transmitter weighing less than 4 g underwater and usable on fish of less than 0.5 kg weight is described. The signal consisting of a sound pulse triggered by the QRS spike of the electrocardiogram is detectable at ranges to 400 m. Continuous records lasting 7 days were made of cardiac rhythms of brown trout. Mean heart rates were low indicating a metabolic rate of not more than 1.55 times the basal metabolic rate. Maximum heart rates were rare, occupying less than 0.5% of the time; there was no evidence of build up of oxygen debt due to periods of high activity. Following a settling down period after the attachment of the transmitter, the fish exhibited a diurnal rhythm with higher heart rates during the day. The transition from day to night heart rates and vice versa in one fish was shown to anticipate solar altitude change by half-hour. Missing heart beats (cardiac inhibitory reflexes) are discussed as indicators of a sensory input, but they are not reliable indicators of feeding activity. It is concluded that stamina is not important for normal day to day survival of adult trout and the influence of various ecological factors is discussed.  相似文献   

20.
1. The effects of raising cockroaches, Leucophaea maderae, in non-24 h light cycles on circadian rhythms in adults were examined. The average period (tau) of freerunning rhythms of locomotor activity of animals exposed to LD 11:11 (T22) during post-embryonic development was significantly shorter (tau = 22.8 +/- 0.47 SD, n = 85) than that of animals raised in LD 12:12 (T24) (tau = 23.7 +/- 0.20 h, n = 142), while animals raised in LD 13:13 (T26) had significantly longer periods (tau = 24.3 +/- 0.21 h, n = 65). Animals raised in constant darkness (DD) had a significantly shorter period (tau = 23.5 +/- 0.21 h, n = 13) than siblings raised in constant light (LL) (tau = 24.0 +/- 0.15 h, n = 10). 2. The differences in tau between animals raised in T22 and T24 were found to be stable in DD for at least 7 months and could not be reversed by exposing animals to LD 12:12 or LD 6:18. 3. Animals raised in either T24 or DD and then exposed as adults to T22 exhibited average freerunning periods that were not different from animals not exposed to T22. 4. Measurement of freerunning periods at different temperatures of animals raised in T22, T24, or T26 showed that the temperature compensation of tau was not affected by the developmental light cycle. These results indicate that the lighting conditions during post-embryonic development can permanently alter the freerunning period of the circadian system in the cockroach, but do not affect its temperature compensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号