首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The duplex–hairpin interconversion of two DNA decamers, d(CAACGGGTTG) and d(CAACCCGTTG), has been characterized thermodynamically and kinetically by using uv-melting and nmr relaxation methods. Separately, each decamer shows slow exchange between hairpin and duplex conformations. The hairpin conformations have melting points of 47 and 50°C, respectively, and exhibit similar thermodynamic stabilities. The enthalpies of duplex formation, measured by nmr, were found to be very similar (ΔHDH = 26 ± 3 kcal/mole) for both decanters at low salt concentrations (< 50 mM NaCl). However, as the salt concentration was increased the behavior of ΔHDH, and kinetics is significantly different for each decamer. The d(CAACGGGTTG) decamer forms a duplex containing two central G·G mismatches at high salt and DNA concentration. Based upon the measurement of high interconversion activation energies and a decrease in hairpin formation rate with increasing salt, the interconversion between hairpin and duplex was concluded to proceed by complete strand dissociation. In contrast, the d(CAAC-CCGTTG) decamer was determined to form a duplex with two centrally located C·C mismatches at pH values less than 6.2, consistent with the formation of a hemiprotonated C+·C mismatch. At pH values greater than 6.4, the hairpin–duplex equilibrium is almost completely shifted toward the hairpin conformation at DNA concentrations of 0.5–7.0 mM and salt concentrations of 10–100 mM. The interconversion of duplex and hairpin conformations was ascertained by means of both kinetic and thermodynamic measurements to proceed by a slightly different mechanism than its complementary decamer. Although the interconversion proceeds by complete strand separation as suggested by high duplex-hairpin interconversion activation enthalpies, the increasing hairpin formation rate with increasing ionic strength as well as the ΔHDH, dependence on sail indicate that an intermediate internally bulged duplex (no C+·C formation) is stabilized by increasing ionic strength. These data support an interconversion mechanism where an intermediate internally bulged duplex may be the rate limiting step before strand separation. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
K Zieba  T M Chu  D W Kupke  L A Marky 《Biochemistry》1991,30(32):8018-8026
The role of water in the formation of stable duplexes of nucleic acids is being studied by determining the concurrent volume change, heats, and counterion uptake that accompany the duplexation process. The variability of the volume contraction that we have observed in the formation of a variety of homoduplexes suggests that sequence and conformation acutely affect the degree of hydration. We have used a combination of densimetric and calorimetric techniques to measure the change in volume and enthalpy resulting from the mixing of two complementary strands to form (a) fully paired duplexes with 10 or 11 base pairs and (b) bulged decameric duplexes with an extra dA or dT unmatched residue. We also monitored absorbance vs temperature profiles as a function of strand and salt concentration for all four duplexes. Relative to the decamer duplex, insertion of an extra dA.dT base pair to form an undecamer duplex results in a favorable enthalpy of -5.6 kcal/mol that is nearly compensated by an unfavorable entropy term of -5.1 kcal/mol. This enthalpy difference correlates with a differential uptake of water molecules, corresponding to an additional hydration of 16 mol of water molecules/mol of base pair. Relative to the fully paired duplexes, both bulged duplexes are 12-16 degrees C less stable and exhibit marginally larger counterion uptake on forming the duplex. The enthalpy change is slightly lower for the T-bulge duplex and less still for the A-bulge duplex. The volume change results indicate that an unmatched residue increases the amount of coulombic and/or structural hydration. The combined results strongly suggest that the destabilizing forces in bulged duplexes are partially compensated by an increase in hydration levels.  相似文献   

3.
Fifty-nine RNA duplexes containing single-nucleotide bulge loops were optically melted in 1 M NaCl, and the thermodynamic parameters DeltaH degrees, DeltaS degrees, DeltaG 37 degrees, and TM for each sequence were determined. Sequences from this study were combined with sequences from previous studies [Longfellow, C. E., et al. (1990) Biochemistry 29, 278-285; Znosko, B. M., et al. (2002) Biochemistry 41, 10406-10417], thus examining all possible group I single-nucleotide bulge loop and nearest-neighbor sequence combinations. The free energy increments at 37 degrees C for the introduction of a group I single-nucleotide bulge loop range between 1.3 and 5.2 kcal/mol. The combined data were used to develop a model for predicting the free energy of a RNA duplex containing a single-nucleotide bulge. For bulge loops with adjacent Watson-Crick base pairs, neither the identity of the bulge nor the nearest-neighbor base pairs had an effect on the influence of the bulge loop on duplex stability. The proposed model for prediction of the stability of a duplex containing a bulged nucleotide was primarily affected by non-nearest-neighbor interactions. The destabilization of the duplex by the bulge was related to the stability of the stems adjacent to the bulge. Specifically, there was a direct correlation between the destabilization of the duplex and the stability of the less stable duplex stem. The stability of a duplex containing a bulged nucleotide adjacent to a wobble base pair also was primarily affected by non-nearest-neighbor interactions. Again, there was a direct correlation between the destabilization of the duplex and the stability of the less stable duplex stem. However, when one or both of the bulge nearest neighbors was a wobble base pair, the free energy increment for insertion of a bulge loop is dependent upon the position and orientation of the wobble base pair relative the bulged nucleotide. Bulge sequences of the type ((5'UBX)(3'GY)), ((5'GBG)(3'UU)) and ((5'UBU)(3'GG)) are less destabilizing by 0.6 kcal/mol, and bulge sequences of the type ((5'GBX)(3'UY)) and ((5'XBU)(3'YG)) are more destabilizing by 0.4 kcal/mol than bulge loops adjacent to Watson-Crick base pairs.  相似文献   

4.
Bulged nucleotides play a variety of important roles in RNA structure and function, frequently forming tertiary interactions and sometimes even participating in RNA catalysis. In pre-mRNA splicing, the U2 snRNA base pairs with the intron branchpoint sequence (BPS) to form a short RNA duplex that contains a bulged adenosine that ultimately serves as the nucleophile that attacks the 5' splice site. We have determined a 2.18-A resolution crystal structure of a self-complementary RNA designed to mimic the highly conserved yeast (Saccharomyces cerevisiae) branchpoint sequence (5'-UACUAACGUAGUA with the BPS italicized and the branchsite adenosine underlined) base paired with its complementary sequence from U2 snRNA. The structure shows a nearly ideal A-form helix from which two unpaired adenosines flip out. Although the adenosine adjacent to the branchsite adenosine is the one bulged out in the structure described here, either of these adenosines can serve as the nucleophile in mammalian but not in yeast pre-mRNA splicing. In addition, the packing of the bulged RNA helices within the crystal reveals a novel RNA tertiary interaction in which three RNA helices interact through bulged adenosines in the absence of any divalent metal ions.  相似文献   

5.
The conformation of a bulged DNA base, whether looped-out of the DNA helix or stacked-in between the flanking bases, can be distinguished using fluorescence spectroscopy of an inserted fluorescent base. If 2-aminopurine, a structural analog of adenine and guanine, is placed in duplex DNA as the bulged base replacing an adenine or guanine, it loops out of the DNA helix into solution. This is determined by the decrease or increase of 2-aminopurine fluorescence during DNA thermomelting: if the 2-aminopurine base stacks into the helix, its fluorescence increases or remains about the same during DNA duplex melting, but if the 2-aminopurine base loops out of the helix, its fluorescence decreases upon melting of the DNA duplex.  相似文献   

6.
We used selective acylation of 2'-amine-substituted nucleotides to visualize local backbone conformations that occur preferentially at bulged sites in DNA duplexes. 2'-Amine acylation reports local nucleotide flexibility because unconstrained 2'-amino nucleotides more readily reach a reactive conformation in which the amide-forming transition state is stabilized by interactions between the amine nucleophile and the adjacent 3'-phosphodiester group. Bulged 2'-amine-substituted cytidine nucleotides react approximately 20-fold more rapidly than nucleotides constrained by base-pairing at 35 degrees C. In contrast, base-paired 2'-amine-substituted nucleotides flanked by a 5' or 3' bulge react two- or six-fold more rapidly, respectively, than the perfectly paired duplex. The relative lack of 2'-amine reactivity for nucleotides adjacent to a DNA bulge emphasizes, first, that structural perturbations do not extend significantly into the flanking duplex structure. Second, the exquisite sensitivity towards very local perturbations in nucleic acid structure suggests that 2'-amine acylation can be used to chemically interrogate deletion mutations in DNA. Finally, these data support the mechanical interpretation that the reactive ribose conformation for 2'-amine acylation requires that the base lies out of the helix and in the major groove, a mechanistic insight useful for designing 2'-amine-based sensors.  相似文献   

7.
The self-complementary DNA decamer duplex d(CTGAATTCAG)2 and its modified counterpart d(CTGA[2AP]TTCAG)2, where the innermost adenine (6-aminopurine) has been replaced with the fluorescent analogue 2-aminopurine (2AP), have been studied by fluorescence and NMR spectroscopy and simulated by molecular dynamics. Both decamers are recognized and cleaved by the EcoRI restriction endonuclease. 2D NMR results show that both decamers have a standard B-type conformation below 20 degrees C, though a disturbance exists to the 5' side of the 2AP site which may originate from increased local mobility. The fluorescence and fluorescence anisotropy decays of both decamers, as well as the one containing 2AP in only one chain, were studied as a function of temperature. The data show that the 2AP base exists in a temperature-dependent distribution of states and shows rapid motions, suggesting interconversion among these states on a time scale of about 10(-10) s. The integrated fluorescence of the decamer with 2AP in both chains shows a large increase around the helix melting temperature whereas the decamer with one 2AP shows only a mild increase, showing that the mixed helix has a different structural transition as sensed by the 2AP base. The data suggest a model of conformational states which have distinct fluorescence decay times. The various states may differ in the degree of base stacking. Fluctuations in the degree of stacking of the A or 2AP base are supported by molecular dynamics simulations, which additionally show that the 2AP-T or A-T base pair hydrogen bonds remain intact during these large motions.  相似文献   

8.
Assignment of the 1H and 31P NMR spectra of a decamer oligodeoxyribonucleotide duplex, d(CCCGATCGGG), and its quinoxaline ((MeCys3, MeCys7]TANDEM) drug duplex complex has been made by two-dimensional 1H-1H and heteronuclear 31P-1H correlated spectroscopy. The 31P chemical shifts of this 10 base pair oligonucleotide follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence, the more upfield the 31P resonance occurs. While the 31P chemical shifts show sequence-specific variations, they also do not generally follow the Calladine "rules" previously demonstrated. 31P NMR also provides a convenient monitor of the phosphate ester backbone conformational changes upon binding of the drug to the duplex. Although the quinoxaline drug, [MeCys3, MeCys7]TANDEM, is generally expected to bind to duplex DNA by bis-intercalation, only small 31P chemical shift changes are observed upon binding the drug to duplex d(CCCGATCGGG). Additionally, only small perturbations in the 1H NMR and UV spectra are observed upon binding the drug to the decamer, although association of the drug stabilizes the duplex form relative to the other states. These results are consistent with a non-intercalative mode of association of the drug. Modeling and molecular mechanics energy minimization demonstrate that a novel structure in which the two quinoxaline rings of the drug binds in the minor groove of the duplex is possible.  相似文献   

9.
The crystal structure of the alternating 5'-purine start decamer d(GCGCGCGCGC) was found to be in the left-handed Z-DNA conformation. Inasmuch as the A.T base pair is known to resist Z-DNA formation, we substituted A.T base pairs in the dyad-related positions of the decamer duplex. The alternating self-complementary decamer d(GCACGCGTGC) crystallizes in a different hexagonal space group, P6(1)22, with very different unit cell dimensions a = b = 38.97 and c = 77.34 A compared with the all-G.C alternating decamer. The A.T-containing decamer has one strand in the asymmetric unit, and because it is isomorphous to some other A-DNA decamers it was considered also to be right-handed. The structure was refined, starting with the atomic coordinates of the A-DNA decamer d(GCGGGCCCGC), by use of 2491 unique reflections out to 1.9-A resolution. The refinement converged to an R value of 18.6% for a total of 202 nucleotide atoms and 32 water molecules. This research further demonstrates that A.T base pairs not only resist the formation of Z-DNA but can also assist the formation of A-DNA by switching the helix handedness when the oligomer starts with a 5'-purine; also, the length of the inner Z-DNA stretch (d(CG)n) is reduced from an octamer to a tetramer. It may be noted that these oligonucleotide properties are in crystals and not necessarily in solutions.  相似文献   

10.
The specificity of a homopyrimidine oligonucleotide binding to a homopurine-homopyrimidine sequence on double-stranded DNA was investigated by both molecular modeling and thermal dissociation experiments. The presence of a single mismatched triplet at the center of the triplex was shown to destabilize the triple helix, leading to a lower melting temperature and a less favorable energy of interaction. A terminal mismatch was less destabilizing than a central mismatch. The extent of destabilization was shown to be dependent on the nature of the mismatch. Both single base-pair substitution and deletion in the duplex DNA target were investigated. When a homopurine stretch was interrupted by one thymine, guanine was the least destabilizing base on the third strand. However, G in the third strand did not discriminate between a C.G and an A.T base pair. If the stretch of purines was interrupted by a cytosine, the presence of pyrimidines (C or T) in the third strand yielded a less destabilizing effect than purines. This study shows that oligonucleotides forming triple helices can discriminate between duplex DNA sequences that differ by one base pair. It provides a basis for the choice of antigene oligonucleotide sequences targeted to selected sequences on duplex DNA.  相似文献   

11.
The effects of aralkylation of selected oligonucleotides by a bulky chemical carcinogen, 7,12-dimethylbenz(a)anthracene (after activation) have been studied. The aralkylation involves the base adenine, designated A* at the modification site, in the center of synthetic heptameric, nonameric and pentadecameric oligonucleotides; complementary strands lacking any modification were also synthesized. The products were studied by UV melting curves and CD spectral techniques. Duplex formation was modified by such aralkylation of a central base in the oligomers. The extent of duplex formation was found to depend on chain length as follows: no evidence was found for duplex formation of the heptamer d(GTCA*GAC) + d(GTCTGAC); the nonamer, d(GTGCA*ATCC) + d(GGATTGCAC), appears to form a duplex at high salt concentrations and reduced temperature; the pentadecamer, d(CCGCT-GCGA*TCCGGC) + d(GCCGGATCGCAGCGG), forms a duplex at low salt concentration and room temperature, but its melting temperature is lower than that of the nonalkylated parent system. CD-spectra for the duplexes formed by the nonamer or pentadecamer are indicative of a right-handed helical conformations. On phosphordiesterase digestion it appears that the aralkylated adenine and the base on its 5'-side act as "stops" for enzymatic digestion from either direction. We suggest, from model building, that this inhibition of phosphodiesterase activity is the result of the steric bulk and disposition of the polycyclic aromatic hydrocarbon. We further suggest that unusual base pairing (mismatching), such as A...A, which would lead to an AT transversion, may be favored by the bulkiness of the aromatic group.  相似文献   

12.
The sequence, temperature, concentration, and solvent dependence of singlet energy transfer from normal DNA bases to the 2-aminopurine base in synthesized DNA oligomers were investigated by optical spectroscopy. Transfer was shown directly by a variable fluorescence excitation band at 260-280 nm. Adenine (A) is the most efficient energy donor by an order of magnitude. Stacks of A adjacent to 2AP act as an antenna for 2AP excitation. An interposed G, C, or T base between A and 2AP effectively blocks transfer from A to 2AP. Base stacking facilitates transfer, while base pairing reduces energy transfer slightly. The efficiency is differentially temperature dependent in single- and double-stranded oligomers and is highest below 0 degrees C in samples measured. An efficiency transition occurs well below the melting transition of a double-stranded decamer. The transfer efficiency in the duplex decamer d(CTGA[2AP]TTCAG)(2) is moderately dependent on the sample and salt concentration and is solvent dependent. Transfer at physiological temperature over more than a few bases is improbable, except along consecutive A's, indicating that singlet energy transfer is not a major factor in the localization of UV damage in DNA. These results have features in common with recently observed electron transfer from 2AP to G in oligonucleotides.  相似文献   

13.
J M Lingbeck  J S Taylor 《Biochemistry》1999,38(41):13717-13724
One mechanism for the origin of UV-induced -1 deletion mutations involves the bypass of a nonadjacent cis-syn cyclobutane pyrimidine dimer containing a single intervening nucleotide. To begin to investigate this mechanism, we required a method for obtaining a single, site-specific, nonadjacent dimer. One approach to the preparation of a nonadjacent dimer is to irradiate a DNA duplex containing a centrally located TNT sequence in which the two T's are paired to an AA sequence in an otherwise fully complementary strand. Triplet-sensitized irradiation of the duplex formed between the 13-mer d(GAGTATCTATGAG) and the 12-mer d(CTCATAATACTC) on ice gave a major product that could be reverted to the parent 13-mer by 254 nm irradiation. Proton NMR experiments established the major product to be the nonadjacent cis-syn cyclobutane dimer formed between the two T's of the TCT sequence. Melting temperature studies show that the nonadjacent dimer is more destabilizing to DNA duplex structure than a normal cis-syn dimer and is as stable as the parental bulged DNA duplex. The nonadjacent dimer-containing 13-mer was ligated into a 51-mer and used as a template for primer-extension studies by DNA polymerases. The nonadjacent dimer could not be bypassed by Sequenase Version 2.0 and terminated synthesis primarily prior to and opposite the 3'-T of the dimer. In contrast, approximately 30% of the dimer was bypassed by an exonuclease-deficient (exo-) Klenow fragment, and termination occurred primarily opposite the 3'- and 5'-T's of the dimer. Bypass of the nonadjacent dimer by exo(-) Klenow fragment led primarily to a single-nucleotide deletion mutation as well as small amounts of a full-length product and a four-nucleotide deletion that could be explained by a primer misalignment mechanism.  相似文献   

14.
Y H Wang  J Griffith 《Biochemistry》1991,30(5):1358-1363
We recently showed that bulged bases kink duplex DNA, with the degree of kinking increasing in roughly equal increments as the number of bases in the bulge increases from one to four [Hsieh, C.-H., & Griffith, J.D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4833-4837]. Here we have examined the kinking of DNA by single A, C, G, or T bulges with different neighboring base pairs. Synthetic 30 base pair (bp) duplex DNAs containing 2 single-base bulges spaced by 10 bp were ligated head to tail, and their electrophoretic behavior in highly cross-linked gels was examined. All bulge-containing DNAs showed marked electrophoretic retardations as compared to non-bulge-containing DNA. Regardless of the sequence of the flanking base pairs, purine bulges produced greater retardations than pyrimidine bulges. Furthermore, C and T bulges produced the same retardations as did G and A bulges. Bulged DNA containing different flanking base pairs showed marked differences in electrophoretic mobility. For C-bulged DNA, the greatest retardations were observed with G.C neighbors, the least with T.A neighbors, and an intermediate amount with a mixture of neighboring base pairs. For A-bulged DNA, the retardations were greatest with G.C neighbors, less with T.A neighbors, even less with a mixture of neighboring base pairs, and finally least with C.G neighbors. Thus flanking base pairs affect C-bulged DNA and A-bulged DNA differently, and G.C and C.G flanking base pairs were seen to have very different effects. These results imply an important role of base stacking in determining how neighboring base pairs influence the kinking of DNA by a single-base bulge.  相似文献   

15.
Two heteroduplexes d(C1A2C3T4C5G6C7A8C9A10C11)-d (G12T13G14T15G16G17A18G19T20G21) containing a bulged guanine either unmodified or modified with the carcinogen N-2-acetylaminofluorene (AAF) have been studied by nuclear magnetic resonance (NMR) as models of slipped mutagenic intermediates (SMI). Conformational equilibria are observed in both the unmodified and the AAF-modified heteroduplexes. The major conformation of the unmodified duplex is one where the extra guanine is stacked in the helix and the major conformation of the AAF-modified heteroduplex is one where the AAF is external to the helix. Unusual sugar proton chemical shifts of C5- and G6-AAF indicate that the AAF ring is pointing out in the 5' direction. A strong increase in the modified heteroduplex melting temperature (+15 degrees C) is observed. Moreover, in contrast to the unmodified heteroduplex, which shows extensive melting in the vicinity of the bulged guanine, the base pairs around the bulge in the AAF-modified heteroduplex remain paired at temperatures up to 30 degrees C. This exceptional stability of the site around the bulged modified guanine is suggested to be responsible for the high rate of -1 mutation induced by AAF at repetitive sequences.  相似文献   

16.
The crystal structure of the self-complementary chimeric decamer duplex r(C)d(CGGCGCCG)r(G), with RNA base pairs at both termini, has been solved at 1.9 A resolution by the molecular replacement method and refined to an R value of 0.145 for 2,314 reflections. The C3'-endo sugar puckers of the terminal riboses apparently drive the entire chimeric duplex into an A-DNA conformation, in contrast to the B-DNA conformation adopted by the all-deoxy decamer of the same sequence. Five symmetry related duplexes encapsulate a spermine molecule which interacts with ten phosphate groups, both directly and through water molecules to form multiple ionic and hydrogen bonding interactions. The spermine interaction severely bends the duplexes by 31 degrees into the major groove at the fourth base pair G(4).C(17), jolts it and slides the 'base plate' into the minor groove. This base pair, together with the adjacent base pair in the top half and the corresponding pseudo two-fold related base pairs in the bottom half, form four minor groove base-paired multiples with the terminal base pairs of two neighboring duplexes.  相似文献   

17.
3-Nitropyrrole (M) was introduced as a non-discriminating 'universal' base in nucleic acid duplexes by virtue of small size and a presumed tendency to stack but not hydrogen bond with canonical bases. However, the absence of thermally-induced hyperchromic changes by single-stranded deoxyoligomers in which M alternates with A or C residues shows that M does not stack strongly with A or C nearest neighbors. Yet, the insertion of a centrally located M opposite any canonical base in a duplex is sometimes even less destabilizing than that of some mismatches, and the variation in duplex stability is small. In triplexes, on the other hand, an M residue centrally located in the third strand reduces triplex stability drastically even when the X.Y target base pair is A.T or G. C in a homopurine. homopyrimidine segment. But, when the target duplex opposition is M-T and the third strand residue is T, the presence of M in the test triplet has little effect on triplex stability. Therefore, a lack of hydrogen bonding in an otherwise helix-compatible test triplet cannot be responsible for triplex destabilization when M is the third strand residue. Thus, M is non-discriminating and none-too-destabilizing in a duplex, but in a triplex it is extremely destabilizing when in the third strand.  相似文献   

18.
Popenda L  Adamiak RW  Gdaniec Z 《Biochemistry》2008,47(18):5059-5067
The RNA single bulge motif is an unpaired residue within a strand of several complementary base pairs. To gain insight into structural changes induced by the presence of the adenosine bulge on RNA duplex, the solution structures of RNA duplex containing a single adenine bulge (5'-GCAGAAGAGCG-3'/5'-CGCUCUCUGC-3') and a reference duplex with all Watson-Crick base pairs (5'-GCAGAGAGCG-3'/5'-CGCUCUCUGC-3') have been determined by NMR spectroscopy. The reference duplex structure is a regular right-handed helix with all of the attributes of an A-type helix. In the bulged duplex, single adenine bulge stacks into the helix, and the bulge region forms a well-defined structure. Both structures were analyzed by the use of calculated helical parameters. Distortions induced by the accommodation of unpaired residue into the helical structure propagate over the entire structure and are manifested as the reduced base pairs inclination and x-displacement. Intrahelical position of bulged adenine A5 is stabilized by efficient stacking with 5'-neighboring residues G4.  相似文献   

19.
Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson–Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson–Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson–Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3′ or 5′ of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.  相似文献   

20.
M A Rosen  L Shapiro  D J Patel 《Biochemistry》1992,31(16):4015-4026
We have synthesized an oligodeoxynucleotide duplex, d(G-C-A-T-C-G-A-T-A-G-C-T-A-C-G).d(C-G-T-A-G-C-C-G-A-T-C-G), with a three-base bulge loop (A-T-A) at a central site in the first strand. Nuclear Overhauser experiments (NOESY) in H2O indicate that the GC base pairs flanking the bulge loop are intact between 0 and 25 degrees C. Nuclear Overhauser effects in both H2O and D2O indicate that all bases within the bulge loop are stacked into the helix. These unpaired bases retain an anti conformation about their glycosidic bonds as they stack within the duplex. The absence of normal sequential connectivities between the two cytosine residues flanking the bulge site on the opposite strand indicates a disruption in the geometry of this base step upon insertion of the bulged bases into the helix. This conformational perturbation is more akin to a shearing apart of the bases, which laterally separates the two halves of the molecule, rather than the "wedge" model often invoked for single-base bulges. Using molecular dynamics calculations, with both NOE-derived proton-proton distances and relaxation matrix-calculated NOESY cross peak volumes as restraints, we have determined the solution structure of an A-T-A bulge loop within a DNA duplex. The bulged bases are stacked among themselves and with the guanine bases on either side of the loop. All three of the bulged bases are displaced by 2-3 A into the major groove, increasing the solvent accessibility of these residues. The ATA-bulge duplex is significantly kinked at the site of the lesion, in agreement with previously reported electron microscopy and gel retardation studies on bulge-containing duplexes [Hsieh, C.-H., & Griffith, J. D. (1989) Proc. Natl. Acad. Sci. U.S.A 86, 4833-4837; Bhattacharyya, A., & Lilley, D. M. J. (1989) Nucleic Acids Res. 17, 6821-6840]. Bending occurs in a direction away from the bulge-containing strand, and we find a significant twist difference of 84 degrees between the two base pairs flanking the bulge loop site. This value represents 58% of the twist difference for base pairs four steps apart in B-DNA. These results suggest a structural mechanism for the bending of DNA induced by unpaired bases, as well as accounting for the effect bulge loops may have on the secondary and tertiary structures of nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号