首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eucaryotes, 10-formyltetrahydrofolate (formyl-THF) synthetase, 5,10-methenyl-THF cyclohydrolase, and NADP(+)-dependent 5,10-methylene-THF dehydrogenase activities are present on a single polypeptide termed C1-THF synthase. This trifunctional enzyme, encoded by the ADE3 gene in the yeast Saccharomyces cerevisiae, is thought to be responsible for the synthesis of the one-carbon donor 10-formyl-THF for de novo purine synthesis. Deletion of the ADE3 gene causes adenine auxotrophy, presumably as a result of the lack of cytoplasmic 10-formyl-THF. In this report, defined point mutations that affected one or more of the catalytic activities of yeast C1-THF synthase were generated in vitro and transferred to the chromosomal ADE3 locus by gene replacement. In contrast to ADE3 deletions, point mutations that inactivated all three activities of C1-THF synthase did not result in an adenine requirement. Heterologous expression of the Clostridium acidiurici gene encoding a monofunctional 10-formyl-THF synthetase in an ade3 deletion strain did not restore growth in the absence of adenine, even though the monofunctional synthetase was catalytically competent in vivo. These results indicate that adequate cytoplasmic 10-formyl-THF can be produced by an enzyme(s) other than C1-THF synthase, but efficient utilization of that 10-formyl-THF for purine synthesis requires a nonenzymatic function of C1-THF synthase. A monofunctional 5,10-methylene-THF dehydrogenase, dependent on NAD+ for catalysis, has been identified and purified from yeast cells (C. K. Barlowe and D. R. Appling, Biochemistry 29:7089-7094, 1990). We propose that the characteristics of strains expressing full-length but catalytically inactive C1-THF synthase could result from the formation of a purine-synthesizing multienzyme complex involving the structurally unchanged C1-THF synthase and that production of the necessary one-carbon units in these strains is accomplished by an NAD+ -dependent 5,10-methylene-THF dehydrogenase.  相似文献   

2.
We have purified the enzyme 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) from Escherichia coli to homogeneity by a newly devised procedure. The enzyme has been purified at least 2,000-fold in a 31% yield. The specific activity of the enzyme obtained is 7.4 times greater than any previous preparation from this source. The purified enzyme is specific for NADP. The protein also contains 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9) activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and behavior on a molecular sieving column suggest that the enzyme is a dimer of identical subunits. We have cloned the E. coli gene coding for the enzyme through the use of polymerase chain reaction based on primers designed from the NH2 terminal analysis of the isolated enzyme. We sequenced the gene. The derived amino acid sequence of the enzyme contains 287 amino acids of Mr 31,000. The sequence shows 50% identity to two bifunctional mitochondrial enzymes specific for NAD, and 40-45% identity to the presumed dehydrogenase/cyclohydrolase domains of the trifunctional C1-tetrahydrofolate synthase of yeast mitochondria and cytoplasm and human and rat cytoplasm. An identical sequence of 14 amino acids with no gaps is present in all 7 sequences.  相似文献   

3.
NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is composed of two nonidentical subunits, designated IDH1 (Mr approximately 40,000) and IDH2 (Mr approximately 39,000). We have isolated and characterized a yeast genomic clone containing the IDH2 gene. The amino acid sequence deduced from the gene indicates that IDH2 is synthesized as a precursor of 369 amino acids (Mr 39,694) and is processed upon mitochondrial import to yield a mature protein of 354 amino acids (Mr 37,755). Amino acid sequence comparison between S. cerevisiae IDH2 and S. cerevisiae NADP(+)-dependent isocitrate dehydrogenase shows no significant sequence identity, whereas comparison of IDH2 and Escherichia coli NADP(+)-dependent isocitrate dehydrogenase reveals a 33% sequence identity. To confirm the identity of the IDH2 gene and examine the relationship between IDH1 and IDH2, the IDH2 gene was disrupted by genomic replacement in a haploid yeast strain. The disruption strain expressed no detectable IDH2, as determined by Western blot analysis, and was found to lack NAD(+)-dependent isocitrate dehydrogenase activity, indicating that IDH2 is essential for a functional enzyme. Overexpression of IDH2, however, did not result in increased NAD(+)-dependent isocitrate dehydrogenase activity, suggesting that both IDH1 and IDH2 subunits are required for catalytic activity. The disruption strain was unable to utilize acetate as a carbon source and exhibited a 2-fold slower growth rate than wild type strains on glycerol or lactate. This growth phenotype is consistent with NAD(+)-dependent isocitrate dehydrogenase performing an essential role in the oxidative function of the citric acid cycle.  相似文献   

4.
Succinic semialdehyde reductase, a NADP+-dependent enzyme, was purified from whole pig brain homogenates. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Succinic semialdehyde reductase (Mr 110,000) catalyzes the reduction of succinic semialdehyde to 4-hydroxybutyrate. The equilibrium constant of the reaction is Keq = 5.8 X 10(7) M-1 at pH 7 and 25 degrees C. The inhibition kinetic patterns obtained when 4-hydroxybutyrate or substrate analogs are used as inhibitors of the reaction catalyzed by the reductase are consistent with an ordered sequential mechanism, in which the coenzyme NADPH adds to the enzyme before the aldehyde substrate. A specific aldehyde reductase was also purified to homogeneity from brain mitochondria preparations. Its catalytic properties are identical to those of the enzyme isolated from whole brain homogenates. It is postulated that two enzymes, i.e. a NAD+-dependent dehydrogenase and a NADP+-dependent reductase, participate in the metabolism of succinic semialdehyde in the mitochondria matrix.  相似文献   

5.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

6.
5,10-Methylenetetrahydrofolate dehydrogenase (MTD) catalyzes the reversible oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate. This reaction is critical for the supply of one-carbon units at the required oxidation states for the synthesis of purines and dTMP. For most MTDs, dehydrogenase activity is co-located with a methenyl-THF cyclohydrolase activity as part of bifunctional or trifunctional enzyme. The yeast Saccharomyces cerevisiae contains a monofunctional NAD(+)-dependent 5,10-methylenetetrahydrofolate dehydrogenase (yMTD). Kinetic, crystallographic, and mutagenesis studies were conducted to identify critical residues in order to gain further insight into the reaction mechanism of this enzyme and its apparent lack of cyclohydrolase activity. Hydride transfer was found to be rate-limiting for the oxidation of methylenetetrahydrofolate by kinetic isotope experiments (V(H)/V(D) = 3.3), and the facial selectivity of the hydride transfer to NAD(+) was determined to be Pro-R (A-specific). Model building based on the previously solved structure of yMTD with bound NAD cofactor suggested a possible role for three conserved amino acids in substrate binding or catalysis: Glu121, Cys150, and Thr151. Steady-state kinetic measurements of mutant enzymes demonstrated that Glu121 and Cys150 were essential for dehydrogenase activity, whereas Thr151 allowed some substitution. Our results are consistent with a key role for Glu121 in correctly binding the folate substrate; however, the exact role of C150 is unclear. Single mutants Thr57Lys and Tyr98Gln and double mutant T57K/Y98Q were prepared to test the hypothesis that the lack of cyclohydrolase activity in yMTD was due to the substitution of a conserved Lys/Gln pair found in bifunctional MTDs. Each mutant retained dehydrogenase activity, but no cyclohydrolase activity was detected.  相似文献   

7.
Three hybridoma cell lines secreting antibodies against human placental NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) were produced. Purified IgG2b from these cell lines recognized a distinct band of Mr 28,000 on SDS/PAGE from the purified enzyme as well as a band of Mr 56,000 from the crude enzyme preparation. These three monoclonal antibodies inhibited 15-OH-PGDH activity to different degrees. Inhibition of the enzyme activity could be prevented by prior incubation of the enzyme with NAD+ but not with prostaglandin E2 (PGE2) or NADP+. Inhibition by monoclonal antibodies appears to be non-competitive with respect to NAD+ and PGE2. An increased concentration of antibodies alters the apparent Km for NAD+ but not for PGE2, further supporting the notion that the antibodies bind to the coenzyme-binding site. The availability of these monoclonal antibodies should be valuable for probing the structure of the active site.  相似文献   

8.
Cell-free extracts derived from yeasts Candida utilis ATCC 26387, Hansenula polymorpha ATCC 26012, Pichia sp. NRRL-Y-11328 Torulopsis sp. strain A1 and Kloeckera sp. strain A2 catalyzed an NAD+-dependent oxidation of secondary alcohols (2-propanol, 2-butanol, 2-pentanol, 2-hexanol) to the corresponding methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hexanone). We have purified a NAD+-specific secondary alcohol dehydrogenase from methanol-grown yeast, Pichia sp. The purified enzyme is homogenous as judged by polyacrylamide gel electrophoresis. The purified enzyme catalyzed the oxidation of secondary alcohols to the corresponding methyl ketones in the presence of NAD+ as an electron acceptor. Primary alcohols were not oxidized by the purified enzyme. The optimum pH for oxidation of secondary alcohols by the purified enzyme is 8.0. The molecular weight of the purified enzyme as determined by gel filtration is 98 000 and subunit size as determined by sodium dodecyl sulfate gel electrophoresis is 48 000. The activity of the purified secondary alcohol dehydrogenase was inhibited by sulfhydryl inhibitors and metal-binding agents.  相似文献   

9.
NAD(+)-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae is composed of two nonidentical subunits, designated IDH1 and IDH2. The gene encoding IDH2 was previously cloned and sequenced (Cupp, J.R., and McAlister-Henn, L. (1991) J. Biol. Chem. 266, 22199-22205), and in this paper we describe the isolation of a yeast genomic clone containing the IDH1 gene. A fragment of the IDH1 gene was amplified by the polymerase chain reaction method utilizing degenerate oligonucleotides based on tryptic peptide sequences of the purified subunit; this fragment was used to isolate a full length IDH1 clone. The nucleotide sequence of the IDH1 coding region was determined and encodes a 360-residue polypeptide including an 11-residue mitochondrial targeting presequence. Amino acid sequence comparison between IDH1 and IDH2 reveals a 42% sequence identity, and both IDH1 and IDH2 show approximately 32% identity to Escherichia coli NAD(P)(+)-dependent isocitrate dehydrogenase. To examine the function of the IDH1 subunit and to determine the metabolic role of NAD(+)-dependent isocitrate dehydrogenase the IDH1 gene was disrupted in a wild type haploid yeast strain and in a haploid strain lacking IDH2. The IDH1 disruption strains expressed no detectable IDH1 as determined by Western blot analysis, and these strains were found to lack NAD(+)-dependent isocitrate dehydrogenase activity indicating that IDH1 is essential for a functional enzyme. Over-expression of IDH1 in a strain containing IDH2 restored wild type activity but did not result in increased levels of activity, suggesting that both IDH1 and IDH2 are required for a functional enzyme. Growth phenotype analysis of the IDH1 disruption strains revealed that they grew at a reduced rate on the nonfermentable carbon sources examined (glycerol, lactate, and acetate), consistent with NAD(+)-dependent isocitrate dehydrogenase performing a critical role in oxidative function of the citric acid cycle. In addition, the IDH1 disruption strains grew at wild type rates in the absence of glutamate, indicating that these strains are not glutamate auxotrophs.  相似文献   

10.
The NAD+-dependent isocitrate dehydrogenase of the organic acid-producing yeast Yarrowia lipolytica was isolated, purified, and partially characterized. The purification procedure included four steps: ammonium sulfate precipitation, acid precipitation, hydrophobic chromatography, and gel-filtration chromatography. The enzyme was purified 129-fold with a yield of 31% and had a specific activity of 22 U/mg protein. The molecular mass of the enzyme was found to be 412 kDa. The enzyme consists of eight identical subunits with a molecular mass of about 52 kDa. The Km for NAD+ is 136 microM, and that for isocitrate is 581 microM. The effect of some intermediates of the citric acid cycle and nucleotides on the enzyme activity was studied. The role of isocitrate dehydrogenase (NAD+) in the overproduction of citric and keto acids is discussed.  相似文献   

11.
An NADP(+)-dependent D-xylose dehydrogenase from pig liver cytosol was purified about 2000-fold to apparent homogeneity with a yield of 15% and specific activity of 6 units/mg of protein. An Mr value of 62,000 was obtained by gel filtration. PAGE in the presence of SDS gave an Mr value of 32,000, suggesting that the native enzyme is a dimer of similar or identical subunits. D-Xylose, D-ribose, L-arabinose, 2-deoxy-D-glucose, D-glucose and D-mannose were substrates in the presence of NADP+ but the specificity constant (ratio kcat./Km(app.)) is, by far, much higher for D-xylose than for the other sugars. The enzyme is specific for NADP+; NAD+ is not reduced in the presence of D-xylose or other sugars. Initial-velocity studies for the forward direction with xylose or NADP+ concentrations varied at fixed concentrations of the nucleotide or the sugar respectively revealed a pattern of parallel lines in double-reciprocal plots. Km values for D-xylose and NADP+ were 8.8 mM and 0.99 mM respectively. Dead-end inhibition studies to confirm a ping-pong mechanism showed that NAD+ acted as an uncompetitive inhibitor versus NADP+ (Ki 5.8 mM) and as a competitive inhibitor versus xylose. D-Lyxose was a competitive inhibitor versus xylose and uncompetitive versus NADP+. These results fit better to a sequential compulsory ordered mechanism with NADP+ as the first substrate, but a ping-pong mechanism with xylose as the first substrate has not been ruled out. The presence of D-xylose dehydrogenase suggests that in mammalian liver D-xylose is utilized by a pathway other than the pentose phosphate pathway.  相似文献   

12.
11-Dehydro-thromboxane B2 has been identified as a major metabolite of infused as well as endogenous thromboxane B2 in mammalian plasma and urine. This metabolite is derived from thromboxane B2 by enzymatic oxidation at C-11 catalyzed by 11-hydroxythromboxane B2 dehydrogenase. A radioimmunoassay for 11-dehydro-thromboxane B2 has been developed and used for enzyme assay, purification and characterization. Antibodies were generated against 11-dehydro-thromboxane B2 conjugated to bovine thyroglobulin. Labeled marker was prepared by radioiodinating 11-dehydro-thromboxane B2-tyrosine methyl ester conjugate. A sensitive radioimmunoassay capable of detecting 10 pg of 11-dehydro-thromboxane B2 per assay tube was developed. The antibodies showed minimal crossreaction with thromboxane B2 (0.03%), prostaglandin D2 (2.76%) and other eicosanoids (less than 0.03%). The enzyme activity was determined by assaying NAD(+)-dependent formation of immunoreactive 11-dehydro-thromboxane B2 from thromboxane B2. The enzyme was found to be enriched in liver although significant activity was also detected in gastrointestinal tract and kidney in pig. The enzyme was purified from porcine liver cytosol to apparent homogeneity using conventional and affinity chromatography. The purified enzyme exhibited coenzyme specificity for NAD+ and used thromboxane B2 as a substrate. The enzyme also catalyzes NADH-dependent reduction of 11-dehydro-thromboxane B2 to thromboxane B2 indicating the reversibility of the enzyme catalyzed reaction. The apparent Km values for thromboxane B2, 11-dehydro-thromboxane B2 and NAD+ are 8.1, 8.0 and 23 microM, respectively. Subunit Mr was shown to be 55,000, whereas the native enzyme Mr was found to be 110,000 indicating that the enzyme is a dimer. The enzyme is sensitive to sulfhydryl inhibitions suggesting cysteine residues are essential to enzyme activity. The availability of a homogeneous enzyme preparation should allow further studies on the substrate specificity and the structure and function of the enzyme.  相似文献   

13.
Cytoplasmic NADP(+)-dependent isocitrate dehydrogenase (isocitrate: NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42) was purified 290-fold from the 15,000 x g supernatant fraction of porcine corpora lutea. The major purification step was by anion-exchange chromatography with an FPLC mono P column. Enzyme lability was overcome by including Mg2+, DL-isocitrate, dithiothreitol and glycerol in the elution buffers. The molecular weight of the denatured enzyme was found to be 48,000 by SDS-polyacrylamide gel electrophoresis. The Stokes' radius was estimated to be 3.7 nm by gel filtration and the isoelectric point was 4.8 as determined by chromatofocusing. The purified enzyme had a specific activity of 57.8 units/mg and a broad optimal pH for activity from 7.5 to 9.0. The Km for the substrates DL-isocitrate and NADP+ were 13 and 12 microM, respectively. Polyclonal antibodies were raised against the purified enzyme. Protein (Western) blotting showed an immunological similarity between the cytoplasmic enzyme of the ovary, liver, adrenal gland and heart. A difference was demonstrated between the ovarian enzyme and the heart mitochondrial enzyme. The substrate turnover number and Mr of the ovarian enzyme were similar to those found for the enzyme from the liver and adrenal gland.  相似文献   

14.
The kinetic mechanism of NADP(+)-dependent 3 alpha-hydroxysteroid dehydrogenase and NAD(+)-dependent 3 alpha(17 beta)-hydroxysteroid dehydrogenase, purified from hamster liver cytosol, was studied in both directions. For 3 alpha-hydroxysteroid dehydrogenase, the initial velocity and product inhibition studies indicated that the enzyme reaction sequence is ordered with NADP+ binding to the free enzyme and NADPH being the last product to be released. Inhibition patterns by Cibacron blue and hexestrol, and binding studies of coenzyme and substrate are also consistent with an ordered bi bi mechanism. For 3 alpha(17 beta)-hydroxysteroid dehydrogenase, the steady-state kinetic measurements and substrate binding studies suggest a random binding pattern of the substrates and an ordered release of product; NADH is released last. However, the two enzymes transferred the pro-R-hydrogen atom of NAD(P)H to the carbonyl substrate.  相似文献   

15.
Carnitine dehydrogenase (carnitine:NAD+ oxidoreductase, EC 1.1.1.108) from Pseudomonas putida IFP 206 catalyzes the oxidation of L-carnitine to 3-dehydrocarnitine. The enzyme was purified 72-fold to homogeneity as judged by polyacrylamide gel electrophoresis. The molecular mass of this enzyme is 62 kDa and consists of two identical subunits. The isoelectric point was found to be 4.7. the carnitine dehydrogenase is specific for L-carnitine and NAD+. The optimum pH for enzymatic activity in the oxidation reaction was found to be 9.0 and 7.0 in the reduction reaction. The optimal temperature is 30 degrees C. The Km values for substrates were determined.  相似文献   

16.
After solubilization of rat adrenal microsomes with sodium cholate, 3 beta-hydroxysteroid dehydrogenase with steroid 5-ene-4-ene isomerase (abbreviated as steroid isomerase) activity was purified to a homogeneous state. The following characteristics of the enzyme were obtained: 3 beta-Hydroxysteroid dehydrogenase together with steroid isomerase was detected as a single protein band in SDS-polyacrylamide gel electrophoresis, where its mol. wt was estimated as 46,500. Either NAD+ or NADH was required for demonstration of steroid isomerase activity. Treatment of the enzyme with 5'-p-fluorosulfonylbenzoyladenosine, an affinity labeling reagent for NAD+-dependent enzyme, diminished both the enzyme activities.  相似文献   

17.
Two malic enzymes in Pseudomonas aeruginosa   总被引:1,自引:1,他引:0       下载免费PDF全文
Cell-free extract supernatant fluids of Pseudomonas aeruginosa were shown to lack malic dehydrogenase but possess a nicotinamide adenine dinucleotide (NAD)- or NAD phosphate (NADP)-dependent enzymatic activity, with properties suggesting a malic enzyme (malate + NAD (NADP) --> pyruvate + reduced NAD (NADH) (reduced NADP [NADPH] + CO(2)), in agreement with earlier findings. This was confirmed by determining the nature and stoichiometry of the reaction products. Differences in heat stability and partial purification of these activities demonstrated the existence of two malic enzymes, one specific for NAD and the other for NADP. Both enzymes require bivalent metal cations for activity, Mn(2+) being more effective than Mg(2+). The NADP-dependent enzyme is activated by K(+) and low concentrations of NH(4) (+). Both reactions are reversible, as shown by incubation with pyruvate, CO(2), NADH, or NADPH and Mn(2+). The molecular weights of the enzymes were estimated by gel filtration (270,000 for the NAD enzyme and 68,000 for the NADP enzyme) and by sucrose density gradient centrifugation (about 200,000 and 90,000, respectively).  相似文献   

18.
NAD+-dependent L-valine dehydrogenase was purified 180-fold from Streptomyces cinnamonensis, and to homogeneity, as judged by gel electrophoresis. The enzyme has an Mr of 88,000, and appears to be composed of subunits of Mr 41,200. The enzyme catalyses the oxidative deamination of L-valine, L-leucine, L-2-aminobutyric acid, L-norvaline and L-isoleucine, as well as the reductive amination of their 2-oxo analogues. The enzyme requires NAD+ as the only cofactor, which cannot be replaced by NADP+. The enzyme activity is significantly decreased by thiol-reactive reagents, although purine and pyrimidine bases, and nucleotides, do not affect activity. Initial-velocity and product-inhibition studies show that the reductive amination proceeds through a sequential ordered ternary-binary mechanism; NADH binds to the enzyme first, followed by 2-oxoisovalerate and NH3, and valine is released first, followed by NAD+. The Michaelis constants are as follows; L-valine, 1.3 mM; NAD+, 0.18 mM; NADH, 74 microM; 2-oxoisovalerate, 0.81 mM; and NH3, 55 mM. The pro-S hydrogen at C-4' of NADH is transferred to the substrate; the enzyme is B-stereospecific. It is proposed that the enzyme catalyses the first step of valine catabolism in this organism.  相似文献   

19.
A bifunctional enzyme, L-(+)-tartrate dehydrogenase-D-(+)-malate dehydrogenase (decarboxylating) (EC 1.1.1.93 and EC 1.1.1. . . , respectively), was discovered in cells of Rhodopseudomonas sphaeroides Y, which accounts for the ability of this organism to grow on L-(+)-malate. The enzyme was purified 110-fold to homogeneity with a yield of 51%. During the course of purification, including ion-exchange chromatography and preparative gel electrophoresis, both enzyme activities appeared to be in association. The ratio of their activities remained almost constant [1:10, L-(+)-tartrate dehydrogenase/D-(+)-malate dehydrogenase (decarboxylating)] throughout all steps of purification. Analysis by polyacrylamide gel electrophoresis revealed the presence of a single protein band, the position of which was coincident with both L-(+)-tartrate dehydrogenase and D-(+)-malate dehydrogenase (decarboxylating) activities. The apparent molecular weight of the enzyme was determined to be 158,000 by gel filtration and 162,000 by ultracentrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single polypeptide chain with an estimated molecular weight of 38,500, indicating that the enzyme consisted of four subunits of identical size. The isoelectric point of the enzyme was between pH 5.0 and 5.2. The enzyme catalyzed the NAD-linked oxidation of L-(+)-tartrate as well as the oxidative decarboxylation of D-(+)-malate. For both reactions, the optimal pH was in a range from 8.4 to 9.0. The activation energy of the reaction (delta Ho) was 71.8 kJ/mol for L-(+)-tartrate and 54.6 kJ/mol for D-(+)-malate. NAD was required as a cosubstrate, and optimal activity depended on the presence of both Mn2+ and NH4+ ions. The reactions followed Michaelis-Menten kinetics, and the apparent Km values of the individual reactants were determined to be: L-(+)-tartrate, 2.3 X 10(-3) M; NAD, 2.8 X 10(-4) M; and Mn2+, 1.6 X 10(-5) M with respect to L-(+)-tartrate; and D-(+)-malate, 1.7 X 10(-4) M; NAD, 1.3 X 10(-4); and Mn2+, 1.6 X 10(-5) M with respect to D-(+)-malate. Of a variety of compounds tested, only meso-tartrate, oxaloacetate, and dihydroxyfumarate were effective inhibitors. meso-Tartrate and oxaloacetate caused competitive inhibition, whereas dihydroxyfumarate caused noncompetitive inhibition. The Ki values determined for the inhibitors were, in the above sequence, 1.0, 0.014, and 0.06 mM with respect to L-(+)-tartrate and 0.28, 0.012, and 0.027 mM with respect to D-(+)-malate.  相似文献   

20.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号