首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three soybean ( Glycine max L. Merr.) cultivars (Maple Glen, Clark and CNS) were exposed to three CO2 concentrations (370, 555 and 740 μmol mol−1) and three growth temperatures (20/15°, 25/20° and 31/26°C, day/night) to determine intraspecific differences in single leaf/whole plant photosynthesis, growth and partitioning, phenology and final biomass. Based on known carboxylation kinetics, a synergistic effect between temperature and CO2 on growth and photosynthesis was predicted since elevated CO2 increases photosynthesis by reducing photorespiration and photorespiration increases with temperature. Increasing CO2 concentrations resulted in a stimulation of single leaf photosynthesis for 40–60 days after emergence (DAE) at 20/15°C in all cultivars and for Maple Glen and CNS at all temperatures. For Clark, however, the onset of flowering at warmer temperatures coincided with the loss of stimulation in single leaf photosynthesis at elevated CO2 concentrations. Despite the season-long stimulation of single leaf photosynthesis, elevated CO2 concentrations did not increase whole plant photosynthesis except at the highest growth temperature in Maple Glen and CNS, and there was no synergistic effect on final biomass. Instead, the stimulatory effect of CO2 on growth was delayed by higher temperatures. Data from this experiment suggest that: (1) intraspecific variation could be used to select for optimum soybean cultivars with future climate change; and (2) the relationship between temperature and CO2 concentration may be expressed differently at the leaf and whole plant levels and may not solely reflect known changes in carboxylation kinetics.  相似文献   

2.
Using controlled environmental growth chambers, whole plants of soybean, cv. ‘Clark’, were examined during early development (7–20 days after sowing) at both ambient (≈ 350 μL L–1) and elevated (≈ 700 μL L–1) carbon dioxide and a range of air temperatures (20, 25, 30, and 35 °C) to determine if future climatic change (temperature or CO2 concentration) could alter the ratio of carbon lost by dark respiration to that gained via photosynthesis. Although whole-plant respiration increased with short-term increases in the measurement temperature, respiration acclimated to increasing growth temperature. Respiration, on a dry weight basis, was either unchanged or lower for the elevated CO2 grown plants, relative to ambient CO2 concentration, over the range of growth temperatures. Levels of both starch and sucrose increased with elevated CO2 concentration, but no interaction between CO2 and growth temperature was observed. Relative growth rate increased with elevated CO2 concentration up to a growth temperature of 35 °C. The ratio of respiration to photosynthesis rate over a 24-h period during early development was not altered over the growth temperatures (20–35 °C) and was consistently less at the elevated relative to the ambient CO2 concentration. The current experiment does not support the proposition that global increases in carbon dioxide and temperature will increase the ratio of respiration to photosynthesis; rather, the data suggest that some plant species may continue to act as a sink for carbon even if carbon dioxide and temperature increase simultaneously.  相似文献   

3.
Hurricane disturbances have profound impacts on ecosystem structure and function, yet their effects on ecosystem CO2 exchange have not been reported. In September 2004, our research site on a fire‐regenerated scrub‐oak ecosystem in central Florida was struck by Hurricane Frances with sustained winds of 113 km h−1 and wind gusts as high as 152 km h−1. We quantified the hurricane damage on this ecosystem resulting from defoliation: we measured net ecosystem CO2 exchange, the damage and recovery of leaf area, and determined whether growth in elevated carbon dioxide concentration in the atmosphere (Ca) altered this disturbance. The hurricane decreased leaf area index (LAI) by 21%, which was equal to 60% of seasonal variation in canopy growth during the previous 3 years, but stem damage was negligible. The reduction in LAI led to a 22% decline in gross primary production (GPP) and a 25% decline in ecosystem respiration (Re). The compensatory declines in GPP and Re resulted in no significant change in net ecosystem production (NEP). Refoliation began within a month after the hurricane, although this period was out of phase with the regular foliation period, and recovered 20% of the defoliation loss within 2.5 months. Full recovery of LAI, ecosystem CO2 assimilation, and ecosystem respiration did not occur until the next growing season. Plants exposed to elevated Ca did not sustain greater damage, nor did they recover faster than plants grown under ambient Ca. Thus, our results indicate that hurricanes capable of causing significant defoliation with negligible damage to stems have negligible effects on NEP under current or future CO2‐enriched environment.  相似文献   

4.
The composition and morphology of leaves exposed to elevated [CO2] usually change so that the leaf nitrogen (N) per unit dry mass decreases and the leaf dry mass per unit area increases. However, at ambient [CO2], leaves with a high leaf dry mass per unit area usually have low leaf N per unit dry mass. Whether the changes in leaf properties induced by elevated [CO2] follow the same overall pattern as that at ambient [CO2] has not previously been addressed. Here we address this issue by using leaf measurements made at ambient [CO2] to develop an empirical model of the composition and morphology of leaves. Predictions from that model are then compared with a global database of leaf measurements made at ambient [CO2]. Those predictions are also compared with measurements showing the impact of elevated [CO2]. In the empirical model both the leaf dry mass and liquid mass per unit area are positively correlated with leaf thickness, whereas the mass of C per unit dry mass and the mass of N per unit liquid mass are constant. Consequently, both the N:C ratio and the surface area:volume ratio of leaves are positively correlated with the liquid content. Predictions from that model were consistent with measurements of leaf properties made at ambient [CO2] from around the world. The changes induced by elevated [CO2] follow the same overall trajectory. It is concluded that elevated [CO2] enhances the rate at which dry matter is accumulated but the overall trajectory of leaf development is conserved.  相似文献   

5.
1. There have been no reports of the long-term responses of the desiccation-tolerant (DT) plants to elevated CO2. Xerophyta scabrida is a DT woody shrub, which loses chlorophylls and thylakoids during desiccation: a so-called poikilochlorophyllous desiccation-tolerant species (PDT). When the leaves of X. scabria are allowed to desiccate, the species shows many of the normal features of (P)DT plants.
2. However, the duration of photosynthesis in X. scabria is prolonged by 300% when the measurements are made at 700 as opposed to 350p.p.m. CO2. The implication is that the carboxylating enzymes must still have been active at this time to enable appreciable photosynthetic activity. This response could have far-reaching implications for the success of such species in a future climate.
3. Lichens and mosses, representing the homoiochlorophyllous DTs (HDT), retain their chlorophyll content and photosynthetic apparatus during desiccation. We show the desiccation responses of two common HDT species ( Cladonia convoluta and Tortula ruralis ) to elevated CO2 for comparison. Both HDT species showed increased net CO2 uptake in the material grown at high CO2 by more than 30% in moss and by more than 50% in lichen. It is concluded that desiccation-tolerant plants will be among the main beneficiaries of a high CO2 future.  相似文献   

6.
We report effects of elevated atmospheric CO2 concentration (Ca) on leaf area index (LAI) of a Florida scrub‐oak ecosystem, which had regenerated after fire for between three and five years in open‐top chambers (OTCs) and was yet to reach canopy closure. LAI was measured using four nondestructive methods, calibrated and tested in experiments performed in calibration plots near the OTCs. The four methods were: PAR transmission through the canopy, normalized difference vegetation index (NDVI), hemispherical photography, and allometric relationships between plant stem diameter and plant leaf area. Calibration experiments showed: (1) Leaf area index could be accurately determined from either PAR transmission through the canopy or hemispherical photography. For LAI determined from PAR transmission through the canopy, ecosystem light extinction coefficient (k) varied with season and was best described as a function of PAR transmission through the canopy. (2) A negative exponential function described the relationship between NDVI and LAI; (3) Allometric relationships overestimated LAI. Throughout the two years of this study, LAI was always higher in elevated Ca, rising from, 20% during winter, to 55% during summer. This seasonality was driven by a more rapid development of leaf area during the spring and a relatively greater loss of leaf area during the winter, in elevated Ca. For this scrub‐oak ecosystem prior to canopy closure, increased leaf area was an indirect mechanism by which ecosystem C uptake and canopy N content were increased in elevated Ca. In addition, increased LAI decreased potential reductions in canopy transpiration from decreases in stomatal conductance in elevated Ca. These findings have important implications for biogeochemical cycles of C, N and H2O in woody ecosystems regenerating from disturbance in elevated Ca.  相似文献   

7.
Branches of 22-year-old loblolly pine (Pinus taeda, L.) trees growing in a plantation were exposed to ambient CO2, ambient + 165 μmol mol?1 CO2 or ambient + 330 μmol mol?1 CO2 concentrations in combination with ambient or ambient + 2°C air temperatures for 3 years. Field measurements in the third year indicated that net carbon assimilation was enhanced in the elevated CO2 treatments in all seasons. On the basis of A/Ci, curves, there was no indication of photosynthetic down-regulation. Branch growth and leaf area also increased significantly in the elevated CO2 treatments. The imposed 2°C increase in air temperature only had slight effects on net assimilation and growth. Compared with the ambient CO2 treatment, rates of net assimilation were ~1·6 times greater in the ambient + 165 μmol mol?1 CO2 treatment and 2·2 times greater in the ambient + 330 μmol mol?1 CO2 treatment. These ratios did not change appreciably in measurements made in all four seasons even though mean ambient air temperatures during the measurement periods ranged from 12·6 to 28·2°C. This indicated that the effect of elevated CO2 concentrations on net assimilation under field conditions was primarily additive. The results also indicated that the effect of elevated CO2 (+ 165 or + 330 μmol mol?1) was much greater than the effect of a 2°C increase in air temperature on net assimilation and growth in this species.  相似文献   

8.
9.
Rice carbon balance under elevated CO2   总被引:1,自引:1,他引:1  
  相似文献   

10.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   

11.
12.
Rice (Oryza sativa L. cv. IR-72) and soybean (Glycine max L. Merr. cv. Bragg), which have been reported to differ in acclimation to elevated CO2, were grown for a season in sunlight at ambient and twice-ambient [CO2], and under daytime temperature regimes ranging from 28 to 40°C. The objectives of the study were to test whether CO2 enrichment could compensate for adverse effects of high growth temperatures on photosynthesis, and whether these two C3 species differed in this regard. Leaf photosynthetic assimilation rates (A) of both species, when measured at the growth [CO2], were increased by CO2 enrichment, but decreased by supraoptimal temperatures. However, CO2 enrichment more than compensated for the temperature-induced decline in A. For soybean, this CO2 enhancement of A increased in a linear manner by 32–95% with increasing growth temperatures from 28 to 40°C, whereas with rice the degree of enhancement was relatively constant at about 60%, from 32 to 38°C. Both elevated CO2 and temperature exerted coarse control on the Rubisco protein content, but the two species differed in the degree of responsiveness. CO2 enrichment and high growth temperatures reduced the Rubisco content of rice by 22 and 23%, respectively, but only by 8 and 17% for soybean. The maximum degree of Rubisco down-regulation appeared to be limited, as in rice the substantial individual effects of these two variables, when combined, were less than additive. Fine control of Rubisco activation was also influenced by both elevated [CO2] and temperature. In rice, total activity and activation were reduced, but in soybean only activation was lowered. The apparent catalytic turnover rate (Kcat) of rice Rubisco was unaffected by these variables, but in soybean elevated [CO2] and temperature increased the apparent Kcat by 8 and 22%, respectively. Post-sunset declines in Rubisco activities were accelerated by elevated [CO2] in rice, but by high temperature in soybean, suggesting that [CO2] and growth temperature influenced the metabolism of 2-carboxyarabinitol-1-phosphate, and that the effects might be species-specific. The greater capacity of soybean for CO2 enhancement of A at supraoptimal temperatures was probably not due to changes in stomatal conductance, but may be partially attributed to less down-regulation of Rubisco by elevated [CO2] in soybean than in rice. However, unidentified species differences in the temperature optimum for photosynthesis also appeared to be important. The responses of photosynthesis and Rubisco in rice and soybean suggest that among C3 plants species-specific differences will be encountered as a result of future increases in global [CO2] and air temperatures.  相似文献   

13.
Plants grown at elevated CO2 often acclimate such that their photosynthetic capacities are reduced relative to ambient CO2-grown plants. Reductions in synthesis of photosynthetic enzymes could result either from reduced photosynthetic gene expression or from reduced availability of nitrogen-containing substrates for enzyme synthesis. Increased carbohydrate concentrations resulting from increased photosynthetic carbon fixation at elevated CO2 concentrations have been suggested to reduce the expression of photosynthetic genes. However, recent studies have also suggested that nitrogen uptake may be depressed by elevated CO2, or at least that it is not increased enough to keep pace with increased carbohydrate production. This response could induce a nitrogen limitation in elevated-CO2 plants that might account for the reduction in photosynthetic enzyme synthesis. If CO2 acclimation were a response to limited nitrogen uptake, the effects of elevated CO2 and limiting nitrogen supply on photosynthesis and nitrogen allocation should be similar. To test this hypothesis we grew non-nodulating soybeans at two levels each of nitrogen and CO2 concentration and measured leaf nitrogen contents, photosynthetic capacities and Rubisco contents. Both low nitrogen and elevated CO2 reduced nitrogen as a percentage of total leaf dry mass but only low nitrogen supply produced significant decreases in nitrogen as a percentage of leaf structural dry mass. The primary effect of elevated CO2 was to increase non-structural carbohydrate storage rather than to decrease nitrogen content. Both low nitrogen supply and elevated CO2 also decreased carboxylation capacity (Vcmax) and Rubisco content per unit leaf area. However, when Vcmax and Rubisco content were expressed per unit nitrogen, low nitrogen supply generally caused them to increase whereas elevated CO2 generally caused them to decrease. Finally, elevated CO2 significantly increased the ratio of RuBP regeneration capacity to Vcmax whereas neither nitrogen supply nor plant age had a significant effect on this parameter. We conclude that reductions in photosynthetic enzyme synthesis in elevated CO2 appear not to result from limited nitrogen supply but instead may result from feedback inhibition by increased carbohydrate contents.  相似文献   

14.
The growth and chemical composition of most plants are influenced by elevated CO2, but accompanying effects on soil organic matter pools and mineralization are less clearly defined, partly because of the short‐term nature of most studies. Herein we describe soil properties from a naturally occurring cold CO2 spring (Hakanoa) in Northland, New Zealand, at which the surrounding vegetation has been exposed to elevated CO2 for at least several decades. The mean annual temperature at this site is ≈ 15.5 °C and rainfall ≈ 1550 mm. The site was unfertilized and ungrazed, with a vegetation of mainly C3 and C4 grasses, and had moderate levels of ‘available’ P. Two soils were present ? a gley soil and an organic soil – but only the gley soil is examined here. Average atmospheric CO2 concentrations at 17 sampling locations in the gley soil area ranged from 372 to 670 ppmv. In samples at 0–5 cm depth, pH averaged 5.4; average values for organic C were 150 g, total N 11 g, microbial C 3.50 g, and microbial N 0.65 g kg?1, respectively. Under standardized moisture conditions at 25 °C, average rates of CO2‐C production (7–14 days) were 5.4 mg kg?1 h?1 and of net mineral‐N production (14 ?42 days) 0.40 mg kg?1 h?1. These properties were all correlated positively and significantly (P < 0.10) with atmospheric CO2 concentrations, but not with soil moisture (except for CO2‐C production) or with clay content; they were, however, correlated negatively and mainly significantly with soil pH. In spite of uncertainties associated with the uncontrolled environment of naturally occurring springs, we conclude that storage of C and N can increase under prolonged exposure to elevated CO2, and may include an appreciable labile fraction in mineral soil with an adequate nutrient supply.  相似文献   

15.
Soybean plants (Glycine max (L.) Merr. c.v. Williams) were grown in CO2 controlled, natural-light growth chambers under one of four atmospheric CO2 concentrations ([CO2]): (1) 250 μmol mol–1 24 h d–1[250/250]; (2) 1000 μmol mol–1 24 h d–1[1000/1000]; (3) 250 μmol mol–1 during daylight hours and 1000 μmol mol–1 during night-time hours [250/1000] or (4) 1000 μmol mol–1 during daylight hours and 250 μmol mol–1 during night-time hours [1000/250]. During the vegetative growth phase few physiological differences were observed between plants exposed to a constant 24 h [CO2] (250/250 and 1000/1000) and those that were switched to a higher or lower [CO2] at night (250/1000 and 1000/250), suggesting that the primary physiological responses of plants to growth in elevated [CO2] is apparently a response to daytime [CO2] only. However, by the end of the reproductive growth phase, major differences were observed. Plants grown in the 1000/250 regime, when compared with those in the 1000/1000 regime, had significantly more leaf area and leaf mass, 27% more total plant dry mass, but only 18% of the fruit mass. After 12 weeks of growth these plants also had 19% higher respiration rates and 32% lower photosynthetic rates than the 1000/1000 plants. As a result the ratio of carbon gain to carbon loss was reduced significantly in the plants exposed to the reduced night-time [CO2]. Plants grown in the opposite switching environment, 250/1000 versus 250/250, showed no major differences in biomass accumulation or allocation with the exception of a significant increase in the amount of leaf mass per unit area. Physiologically, those plants exposed to elevated night-time [CO2] had 21% lower respiration rates, 14% lower photosynthetic rates and a significant increase in the ratio of carbon gain to carbon loss, again when compared with the 250/250 plants. Biochemical differences also were found. Ribulose-1,5-bisphosphate carboxylase/ oxygenase concentrations decreased in the 250/ 1000 treatment compared with the 250/250 plants, and phosphoenolpyruvate carboxylase activity decreased in the 1000/250 compared with the 1000/1000 plants. Glucose, fructose and to a lesser extent sucrose concentrations also were reduced in the 1000/250 treatment compared with the 1000/1000 plants. These results indicate that experimental protocols that do not maintain elevated CO2 levels 24 h d–1 can have significant effects on plant biomass, carbon allocation and physiology, at least for fast-growing annual crop plants. Furthermore, the results suggest some plant processes other than photosynthesis are sensitive to [CO2] and under ecologically relevant conditions, such as high night-time [CO2], whole plant carbon balance can be affected.  相似文献   

16.
Plantago lanceolata L. seedlings were grown in sand microcosm units over a 43‐day experimental period under two CO2 regimes (800 or 400 µmol mol−1) to investigate the effect of elevated atmospheric CO2 concentration on carbon partitioning and exudate release. Total organic carbon (TOC) content of the collected exudate material was measured throughout the experimental period. After 42 days growth the seedlings were labelled with [14C]‐CO2 and the fate of the label within the plant and its release by the roots monitored. Elevated CO2 significantly (P ≤ 0.001) enhanced shoot, root and total dry matter production although the R:S ratio was unaltered, suggesting no alteration in gross carbon partitioning. The cumulative release of TOC (in mg C) over 0‐42 days was unaltered by CO2 treatment however, when expressed as a percentage of net assimilated C, ambient‐grown plants released a significantly (P≤ 0.001) higher percentage from their roots compared to elevated CO2‐grown plants (i.e. 8 vs 3%). The distribution of 14C‐label was markedly altered by CO2 treatment with significantly (P≤ 0.001) greater per cent label partitioned to the roots under elevated CO2. This indicates increased partitioning of recent assimilate below‐ground under elevated CO2 treatment although there was no significant difference in the percentage of 14C‐label released by the roots. Comparison of plant C budgets based on 14C‐pulse‐chase methodology and TOC measurements is discussed.  相似文献   

17.
Arid ecosystems, which occupy about 35% of the Earth's terrestrial surface area, are believed to be among the most responsive to elevated [CO2]. Net ecosystem CO2 exchange (NEE) was measured in the eighth year of CO2 enrichment at the Nevada Desert Free‐Air CO2 Enrichment (FACE) Facility between the months of December 2003–December 2004. On most dates mean daily NEE (24 h) (μmol CO2 m?2 s?1) of ecosystems exposed to elevated atmospheric CO2 were similar to those maintained at current ambient CO2 levels. However, on sampling dates following rains, mean daily NEEs of ecosystems exposed to elevated [CO2] averaged 23 to 56% lower than mean daily NEEs of ecosystems maintained at ambient [CO2]. Mean daily NEE varied seasonally across both CO2 treatments, increasing from about 0.1 μmol CO2 m?2 s?1 in December to a maximum of 0.5–0.6 μmol CO2 m?2 s?1 in early spring. Maximum NEE in ecosystems exposed to elevated CO2 occurred 1 month earlier than it did in ecosystems exposed to ambient CO2, with declines in both treatments to lowest seasonal levels by early October (0.09±0.03 μmol CO2 m?2 s?1), but then increasing to near peak levels in late October (0.36±0.08 μmol CO2 m?2 s?1), November (0.28±0.03 μmol CO2 m?2 s?1), and December (0.54±0.06 μmol CO2 m?2 s?1). Seasonal patterns of mean daily NEE primarily resulted from larger seasonal fluctuations in rates of daytime net ecosystem CO2 uptake which were closely tied to plant community phenology and precipitation. Photosynthesis in the autotrophic crust community (lichens, mosses, and free‐living cyanobacteria) following rains were probably responsible for the high NEEs observed in January, February, and late October 2004 when vascular plant photosynthesis was low. Both CO2 treatments were net CO2 sinks in 2004, but exposure to elevated CO2 reduced CO2 sink strength by 30% (positive net ecosystem productivity=127±17 g C m?2 yr?1 ambient CO2 and 90±11 g C m?2 yr?1 elevated CO2, P=0.011). This level of net C uptake rivals or exceeds levels observed in some forested and grassland ecosystems. Thus, the decrease in C sequestration seen in our study under elevated CO2– along with the extensive coverage of arid and semi‐arid ecosystems globally – points to a significant drop in global C sequestration potential in the next several decades because of responses of heretofore overlooked dryland ecosystems.  相似文献   

18.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

19.
Decomposition of soybean grown under elevated concentrations of CO2 and O3   总被引:1,自引:0,他引:1  
A critical global climate change issue is how increasing concentrations of atmospheric CO2 and ground‐level O3 will affect agricultural productivity. This includes effects on decomposition of residues left in the field and availability of mineral nutrients to subsequent crops. To address questions about decomposition processes, a 2‐year experiment was conducted to determine the chemistry and decomposition rate of aboveground residues of soybean (Glycine max (L.) Merr.) grown under reciprocal combinations of low and high concentrations of CO2 and O3 in open‐top field chambers. The CO2 treatments were ambient (370 μmol mol?1) and elevated (714 μmol mol?1) levels (daytime 12 h averages). Ozone treatments were charcoal‐filtered air (21 nmol mol?1) and nonfiltered air plus 1.5 times ambient O3 (74 nmol mol?1) 12 h day?1. Elevated CO2 increased aboveground postharvest residue production by 28–56% while elevated O3 suppressed it by 15–46%. In combination, inhibitory effects of added O3 on biomass production were largely negated by elevated CO2. Plant residue chemistry was generally unaffected by elevated CO2, except for an increase in leaf residue lignin concentration. Leaf residues from the elevated O3 treatments had lower concentrations of nonstructural carbohydrates, but higher N, fiber, and lignin levels. Chemical composition of petiole, stem, and pod husk residues was only marginally affected by the elevated gas treatments. Treatment effects on plant biomass production, however, influenced the content of chemical constituents on an areal basis. Elevated CO2 increased the mass per square meter of nonstructural carbohydrates, phenolics, N, cellulose, and lignin by 24–46%. Elevated O3 decreased the mass per square meter of these constituents by 30–48%, while elevated CO2 largely ameliorated the added O3 effect. Carbon mineralization rates of component residues from the elevated gas treatments were not significantly different from the control. However, N immobilization increased in soils containing petiole and stem residues from the elevated CO2, O3, and combined gas treatments. Mass loss of decomposing leaf residue from the added O3 and combined gas treatments was 48% less than the control treatment after 20 weeks, while differences in decomposition of petiole, stem, and husk residues among treatments were minor. Decreased decomposition of leaf residues was correlated with lower starch and higher lignin levels. However, leaf residues only comprised about 20% of the total residue biomass assayed so treatment effects on mass loss of total aboveground residues were relatively small. The primary influence of elevated atmospheric CO2 and O3 concentrations on decomposition processes is apt to arise from effects on residue mass input, which is increased by elevated CO2 and suppressed by O3.  相似文献   

20.
Evidence from previous studies suggested that adjustments in assimilate formation and partitioning in leaves might occur over time when plants are exposed to enriched atmospheric CO2. We examined assimilate relations of source (primary unifoliolate) and developing sink (second mainstem trifoliolate) leaves of soybean [ Glycine max (L.) Merr. cv. Lee] plants for 12 days after transfer from a control (350 μl l−1) to a high (700 μ l−1) CO2 environment. Similar responses were evident in the two leaf types. Net CO2 exchange rate (CER) immediately increased and remained elevated in high CO2. Initially, the additional assimilate at high CO2 levels in the light and was utilized in the subsequent dark period. After approximately 7 days, assimilate export in the light began to increase and by 12 days reached rates 3 to 5 times that of the control. In the developing sink leaf, high rates of export in the light occurred as the leaf approached full expansion. The results indicate that a specific acclimation process occurs in source leaves which increases the capacity for assimilate export in the light phase of the diurnal cycle as plants adjust to enriched CO2 and a more rapid growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号