首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

2.
Previously, we compared the efficiency of direct injection with an adenovirus (Ad) expressing human gp100 (hgp100) to immunization with dendritic cells (DC) loaded with the same vector ex vivo. The DC vaccine provided the greatest protection against challenge with B16F10 melanoma, and antitumor immunity was found to be CD8(+) T cell-independent. In the current study, we sought to determine whether lack of CD8(+) T cell-mediated antitumor immunity was a function of the vaccine platform or the tumor line. Both Ad and DC/Ad vaccines elicited CD8(+) CTL reactive against hgp100 and provided protection against B16F10 engineered to express hgp100 demonstrating that both vaccination platforms can effectively generate protective CD8(+) T cell-mediated immunity. The hgp100-induced CTL cross-reacted with murine gp100 (mgp100) and lysed B16F10 cells pulsed with mgp100 peptide indicating that the resistance of B16F10 cells to CTL elicited by hgp100 vaccination may be due to a defect in processing of the endogenous mgp100. Indeed, introduction of the TAP-1 cDNA into B16F10 rendered the cells sensitive to lysis by gp100-specific CTL. Furthermore, gp100-immunized mice were protected from challenge with B16F10-TAP1 cells through a mechanism dependent upon CD8(+) T cells. These results demonstrate that tumor phenotype, not the vaccination platform, ultimately determines CD8(+) or CD4(+) T cell-mediated tumor clearance.  相似文献   

3.
CD4(+)CD25(high) regulatory T cells (Treg) protect the host from autoimmune diseases but are also obstacles against cancer therapies. An ideal cancer vaccine would stimulate specific cytotoxic responses and reduce/suppress Treg function. In this study, we showed that Escherichia coli expressing listeriolysin O and OVA (E. coli LLO/OVA) demonstrated remarkable levels of protection against OVA-expressing tumor cells. By contrast, E. coli expressing OVA only (E. coli OVA) showed poor protection. High-avidity OVA-specific CTL were induced in E. coli LLO/OVA-vaccinated mice, and CD8(+) depletion--but not NK cell depletion, abolished the antitumor activity of the E. coli LLO/OVA vaccine. Phenotypic analysis of T cells following vaccination with either vaccine revealed preferential generation of CD44(high)CD62L(low) CD8(+) effector memory T cells over CD44(high)CD62L(high) central memory T cells. Unexpectedly, CD4(+) depletion turned E. coli OVA into a vaccine as effective as E. coli LLO/OVA suggesting that a subset of CD4(+) cells suppressed the CD8(+) T cell-mediated antitumor response. Further depletion experiments demonstrated that these suppressive cells consisted of CD4(+)CD25(high) regulatory T cells. We therefore assessed these vaccines for Treg function and found that although CD4(+)CD25(high) expansion and Foxp3 expression within this population was similar in all groups of mice, Treg cells from E. coli LLO/OVA-vaccinated animals were unable to suppress conventional T cells proliferation. These findings provide the first evidence that LLO expression affects Treg cell function and may have important implications for enhancing antitumor vaccination strategies in humans.  相似文献   

4.
Aiming to get a better insight on the impact of regulatory CD25(+)CD4(+) T cells in tumor-immunobiology, a simple mathematical model was previously formulated and studied. This model predicts the existence of two alternative modes of uncontrolled tumor growth, which differ on their coupling with the immune system, providing a plausible explanation to the observation that the development of some tumors expand regulatory T cells whereas others do not. We report now the study of how these two tumor classes respond to different therapies, namely vaccination, immune suppression, surgery, and their different combinations. We show 1) how the timing and the dose applied in each particular treatment determine whether the tumor will be rejected, with or without concomitant autoimmunity, or whether it will continue progressing with slower or faster pace; 2) that both regulatory T cell-dependent and independent tumors are equally sensitive to vaccination, although the former are more sensitive to T cell depletion treatments and are unresponsive to partial surgery alone; 3) that surgery, suppression, and vaccination treatments, can synergistically improve their individual effects, when properly combined. Particularly, we predict rational combinations helping to overcome the limitation of these individual treatments on the late stage of tumor development.  相似文献   

5.
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.  相似文献   

6.
The characteristics and functions of CD4(+)CD25(+) regulatory cells have been well defined in murine and human systems. However, the interaction between CD4(+)CD25(+) T cells and dendritic cells (DC) remains unclear. In this study, we examined the effect of human CD4(+)CD25(+) T cells on maturation and function of monocyte-derived DC. We show that regulatory T cells render the DC inefficient as APCs despite prestimulation with CD40 ligand. This effect was marginally reverted by neutralizing Abs to TGF-beta. There was an increased IL-10 secretion and reduced expression of costimulatory molecules in DC. Thus, in addition to direct suppressor effect on CD4(+) T cells, regulatory T cells may modulate the immune response through DC.  相似文献   

7.
The requirement for CD4(+) Th cells in the cross-priming of antitumor CTL is well accepted in tumor immunology. Here we report that the requirement for T cell help can be replaced by local production of GM-CSF at the vaccine site. Experiments using mice in which CD4(+) T cells were eliminated, either by Ab depletion or by gene knockout of the MHC class II beta-chain (MHC II KO), revealed that priming of therapeutic CD8(+) effector T cells following vaccination with a GM-CSF-transduced B16BL6-D5 tumor cell line occurred independently of CD4(+) T cell help. The adoptive transfer of CD8(+) effector T cells, but not CD4(+) effector T cells, led to complete regression of pulmonary metastases. Regression of pulmonary metastases did not require either host T cells or NK cells. Transfer of CD8(+) effector T cells alone could cure wild-type animals of systemic tumor; the majority of tumor-bearing mice survived long term after treatment (>100 days). In contrast, adoptive transfer of CD8(+) T cells to tumor-bearing MHC II KO mice improved survival, but eventually all MHC II KO mice succumbed to metastatic disease. WT mice cured by adoptive transfer of CD8(+) T cells were resistant to tumor challenge. Resistance was mediated by CD8(+) T cells in mice at 50 days, while both CD4(+) and CD8(+) T cells were important for protection in mice challenged 150 days following adoptive transfer. Thus, in this tumor model CD4(+) Th cells are not required for the priming phase of CD8(+) effector T cells; however, they are critical for both the complete elimination of tumor and the maintenance of a long term protective antitumor memory response in vivo.  相似文献   

8.
Although increasing evidence suggests that CTL are important to fight the development of some cancers, the frequency of detectable tumor-specific T cells is low in cancer patients, and these cells have generally poor functional capacities, compared with virus-specific CD8(+) T cells. The generation with a vaccine of potent CTL responses against tumor Ags therefore remains a major challenge. In the present study, ex vivo analyses of Melan-A-specific CD8(+) T cells following vaccination with Melan-A peptide and CpG oligodeoxynucleotides revealed the successful induction in the circulation of effective melanoma-specific T cells, i.e., with phenotypic and functional characteristics similar to those of CTL specific for immunodominant viral Ags. Nonetheless, the eventual impact on tumor development in vaccinated melanoma donors remained limited. The comprehensive study of vaccinated patient metastasis shows that vaccine-driven tumor-infiltrating lymphocytes, although activated, still differed in functional capacities compared with blood counterparts. This coincided with a significant increase of FoxP3(+) regulatory T cell activity within the tumor. The consistent induction of effective tumor-specific CD8(+) T cells in the circulation with a vaccine represents a major achievement; however, clinical benefit may not be achieved unless the tumor environment can be altered to enable CD8(+) T cell efficacy.  相似文献   

9.
The success of cancer immunotherapy is limited by potent endogenous immune-evasion mechanisms, which are at least in part mediated by transforming growth factor-β (TGF-β). The E3 ubiquitin ligase Cbl-b is a key regulator of T cell activation and is established to regulate TGF-β sensitivity. cblb-deficient animals reject tumors via CD8(+) T cells, which make Cbl-b an ideal target for improvement of adoptive T-cell transfer (ATC) therapy. In this study, we show that cblb-deficient CD8(+) T cells are hyper-responsive to T-cell receptor (TCR)/CD28-stimulation and are in part protected against the negative cues induced by TGF-β in vitro. Notably, adoptive transfer of polyclonal, non-TCR transgenic cblb-deficient CD8(+) T cells is not sufficient to reject B16-ova or EG7 tumors in vivo. Thus, cblb-deficient ATC requires proper in vivo re-activation by a dendritic cell (DC) vaccine. In strict contrast to ATC monotherapy, this approach delayed tumor outgrowth and significantly increased survival rates, which is paralleled by increased CD8(+) T-cells infiltration to the tumor site and enrichment of ova-specific and interferon-γ (IFN-γ)-secreting CD8(+) T cell in the draining lymph node (LN). Moreover, CD8(+) T cells from cblb-deficient mice vaccinated with the DC vaccine show increased cytolytic activity in vivo. In summary, our data using cblb-deficient polyclonal, non-TCR-transgenic adoptively transferred CD8(+) T cells into immuno-competent non-lymphodepleted recipients suggest that targeting Cbl-b might serve as a novel 'adjuvant approach', suitable to augment the effectiveness of established anti-cancer immunotherapies.  相似文献   

10.
Chronic hepatitis C virus (HCV) infection is associated with impaired proliferative, cytokine, and cytotoxic effector functions of HCV-specific CD8(+) T cells that probably contribute significantly to viral persistence. Here, we investigated the potential role of T cells with a CD4(+)CD25(+) regulatory phenotype in suppressing virus-specific CD8(+) T-cell proliferation during chronic HCV infection. In vitro depletion studies and coculture experiments revealed that peptide specific proliferation as well as gamma interferon production of HCV-specific CD8(+) T cells were inhibited by CD4(+)CD25(+) T cells. This inhibition was dose dependent, required direct cell-cell contact, and was independent of interleukin-10 and transforming growth factor beta. Interestingly, the T-cell-mediated suppression in chronically HCV-infected patients was not restricted to HCV-specific CD8(+) T cells but also to influenza virus-specific CD8(+) T cells. Importantly, CD4(+)CD25(+) T cells from persons recovered from HCV infection and from healthy blood donors exhibited significantly less suppressor activity. Thus, the inhibition of virus-specific CD8(+) T-cell proliferation was enhanced in chronically HCV-infected patients. This was associated with a higher frequency of circulating CD4(+)CD25(+) cells observed in this patient group. Taken together, our results suggest that chronic HCV infection leads to the expansion of CD4(+)CD25(+) T cells that are able to suppress CD8(+) T-cell responses to different viral antigens. Our results further suggest that CD4(+)CD25(+) T cells may contribute to viral persistence in chronically HCV-infected patients and may be a target for immunotherapy of chronic hepatitis C.  相似文献   

11.
Dendritic cell (DC)-based antitumor immunotherapy is a promising cancer therapy. We have previously shown that tumor-derived TGF-beta limits the efficacy of the DC/tumor fusion vaccine in mice. In the current study we investigated the effect of neutralizing tumor-derived TGF-beta on the efficacy of the DC/tumor fusion vaccine. An adenovirus encoding human TGF-beta receptor type II fused to the Fc region of human IgM (Adv-TGF-beta-R) or a control adenovirus encoding LacZ (Adv-LacZ) was used to express a soluble form of the neutralizing TGF-beta receptor (TGF-beta-R). Murine breast carcinoma cells, 4T1, but not bone marrow-derived DCs, were successfully transfected with Adv-TGF-beta-R (4T1+Adv-TGF-beta-R) using a multiplicity of infection of 300. Immunization with irradiated 4T1+Adv-TGF-beta-R tumor cells conferred enhanced antitumor immunity compared with immunization with irradiated 4T1+Adv-LacZ tumor cells. The DC/4T1+Adv-TGF-beta-R fusion vaccine offered enhanced protective and therapeutic efficacy compared with the DC/4T1-Adv-LacZ fusion vaccine. Because TGF-beta is known to induce regulatory T cells (Tregs), we further showed that the DC/4T1+Adv-TGF-beta-R fusion vaccine induced fewer CD4(+)CD25(+)Foxp3(+) Tregs than the DC/4T1+Adv-LacZ fusion vaccine in vitro and in vivo. The suppressive role of splenic CD4(+)CD25(+) Tregs isolated from mice immunized with DC/4T1+Adv-LacZ was demonstrated using a CTL killing assay. Similar enhanced therapeutic efficacy was observed in murine renal cell carcinoma, RenCa, which expresses a high level of TGF-beta. We conclude that the blockade of tumor-derived TGF-beta reduces Treg induction by the DC/tumor fusion vaccine and enhances antitumor immunity. This may be an effective strategy to enhance human DC-based antitumor vaccines.  相似文献   

12.
Regulatory CD4(+)CD25(+) T cells (Tregs) are defective numerically and functionally in autoimmune hepatitis (AIH). We have investigated and compared the mechanism of action of Tregs in healthy subjects and in AIH patients using Transwell experiments, where Tregs are cultured either in direct contact with or separated from their targets by a semipermeable membrane. We also studied Treg FOXP3 expression and effect on apoptosis. Direct contact is necessary for Tregs to suppress proliferation and IFN-gamma production by CD4(+)CD25(-) and CD8(+) T cells in patients and controls. Moreover, in both, direct contact of Tregs with their targets leads to increased secretion of regulatory cytokines IL-4, IL-10, and TGF-beta, suggesting a mechanism of linked immunosuppression. Tregs/CD4(+)CD25(-) T cell cocultures lead to similar changes in IFN-gamma and IL-10 secretion in patients and controls, whereas increased TGF-beta secretion is significantly lower in patients. In contrast, in patients, Tregs/CD8(+) T cell cocultures lead to a higher increase of IL-4 secretion. In AIH, Treg FOXP3 expression is lower than in normal subjects. Both in patients and controls, FOXP3 expression is present also in CD4(+)CD25(-) T cells, although at a low level and not associated to suppressive function. Both in patients and controls, addition of Tregs does not influence target cell apoptosis, but in AIH, spontaneous apoptosis of CD4(+)CD25(-) T cells is reduced. In conclusion, Tregs act through a direct contact with their targets by modifying the cytokine profile and not inducing apoptosis. Deficient CD4(+)CD25(-) T cell spontaneous apoptosis may contribute to the development of autoimmunity.  相似文献   

13.
Immunization of mice with nonviable Listeria monocytogenes generates an insufficient CD8(+) T cell response and consequently only limited protection against subsequent L. monocytogenes infection. We have recently demonstrated that depletion of regulatory CD4(+) T cells during immunization significantly enhances CD8(+) T cell responses. In the present study, we determined the impact of CD4(+) T cell depletion on the CD8(+) T cell response against heat-killed LISTERIA: Treatment of mice with anti-CD4 mAb during boost immunization with heat-killed Listeria significantly increased numbers of Listeria-specific CD8(+) T cells and improved protection against subsequent infection with L. monocytogenes. During challenge infection, numbers of Listeria-specific CD8(+) T cells were enhanced, and these cells expressed effector functions in terms of IFN-gamma production. In summary, we demonstrate that combining nonviable L. monocytogenes vaccination and CD4(+) T cell depletion improves generation of long-lasting and functional Listeria-specific CD8(+) memory T cells.  相似文献   

14.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

15.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

16.
16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2) lipopeptides act as toll-like receptor (TLR)2/6 ligands and activate natural killer (NK) cells and dendritic cells (DCs) to produce inflammatory cytokines and cytotoxic NK activity in vitro. However, in this study, we found that systemic injection of Pam2 lipopeptides was not effective for the suppression of NK-sensitive B16 melanomas in vivo. When we investigated the immune suppressive mechanisms, systemic injection of Pam2 lipopeptides induced IL-10 in a TLR2-dependent manner. The Pam2 lipopeptides increased the frequencies of Foxp3(+)CD4(+) regulatory T (T reg) cells in a TLR2- and IL-10- dependent manner. The T reg cells from Pam2-lipopeptide injected mice maintained suppressor activity. Pam2 lipopeptides, plus the depletion of T reg with an anti-CD25 monoclonal antibody, improved tumor growth compared with Pam2 lipopeptides alone. In conclusion, our data suggested that systemic treatment of Pam2 lipopeptides promoted IL-10 production and T reg function, which suppressed the effective induction of anti-tumor immunity in vivo. It is necessary to develop an adjuvant that does not promote IL-10 and T reg function in vivo for the future establishment of an anti-cancer vaccine.  相似文献   

17.
CD4(+) T cells control the effector function, memory, and maintenance of CD8(+) T cells. Paradoxically, we found that absence of CD4(+) T cells enhanced adoptive immunotherapy of cancer when using CD8(+) T cells directed against a persisting tumor/self-Ag. However, adoptive transfer of CD4(+)CD25(-) Th cells (Th cells) with tumor/self-reactive CD8(+) T cells and vaccination into CD4(+) T cell-deficient hosts induced autoimmunity and regression of established melanoma. Transfer of CD4(+) T cells that contained a mixture of Th and CD4(+)CD25(+) T regulatory cells (T(reg) cells) or T(reg) cells alone prevented effective adoptive immunotherapy. Maintenance of CD8(+) T cell numbers and function was dependent on Th cells that were capable of IL-2 production because therapy failed when Th cells were derived from IL-2(-/-) mice. These findings reveal that Th cells can help break tolerance to a persisting self-Ag and treat established tumors through an IL-2-dependent mechanism, but requires simultaneous absence of naturally occurring T(reg) cells to be effective.  相似文献   

18.
Myeloid-origin dendritic cells (DCs) can develop into IL-12-secreting DC1 or non-IL-12-secreting DC2 depending on signals received during maturation. Through rapid culture techniques that prepared either mature, CD83+ DC1 or DC2 from CD14+ monocytes in only 2 days followed by a single 6-7 day DC-T cell coculture, we sensitized normal donor CD8+ T cells to tumor Ags (HER-2/neu, MART-1, and gp100) such that peptide Ag-specific lymphocytes constituted up to 16% of the total CD8+ population. Both DC1 and DC2 could sensitize CD8+ T cells that recognized peptide-pulsed target cells. However, with DC2, a general decoupling was observed between recognition of peptide-pulsed T2 target cells and recognition of Ag-expressing tumor cells, with peptide-sensitized T cells responding to tumor only about 15% of the time. In contrast, direct recognition of tumor by T cells was dramatically increased (to 85%) when DC1 were used for sensitization. Enhanced tumor recognition was accompanied by 10- to 100-fold increases in peptide sensitivity and elevated expression of CD8beta, characteristic of high functional avidity T cells. Both of these properties were IL-12-dependent. These results demonstrate the utility of rapid DC culture methods for high efficiency in vitro T cell sensitization that achieves robust priming and expansion of Ag-specific populations in 6 days. They also demonstrate a novel function of IL-12, which is enhancement of CD8+ T cell functional avidity. A new approach to DC-based vaccines that emphasizes IL-12 secretion to enhance functional avidity and concomitant tumor recognition by CD8+ T cells is indicated.  相似文献   

19.
The mechanisms underlying the immunomodulatory functions of mesenchymal stem cells (MSC) on dendritic cells (DC) have been shown to involve soluble factors, such as IL-6 or TGF-beta, or cell-cell contact, or both depending on the report referenced. In this study, we intend to clarify these mechanisms by examining the immunosuppressive effect of human adult MSC on adult DC differentiated from CD34(+) hemopoietic progenitor cells (HPC). MSC have been shown to inhibit interstitial DC differentiation from monocytes and umbilical CD34(+) HPC. In this study, we confirm that MSC not only halt interstitial DC but also Langerhans cell differentiation from adult CD34(+) HPC, as assessed by the decreased expression of CD1a, CD14, CD86, CD80, and CD83 Ags on their cell surface. Accordingly, the functional capacity of CD34(+) HPC-derived DC (CD34-DC) to stimulate alloreactive T cells was impaired. Furthermore, we showed that 1) MSC inhibited commitment of CD34(+) HPC into immature DC, but not maturation of CD34-DC, 2) this inhibitory effect was reversible, and 3) DC generated in coculture with MSC (MSC-DC) induced the generation of alloantigen-specific regulatory T cells following secondary allostimulation. Conditioned medium from MSC cultures showed some inhibitory effect independent of IL-6, M-CSF, and TGF-beta. In comparison, direct coculture of MSC with CD34(+) HPC resulted in much stronger immunosuppressive effect and led to an activation of the Notch pathway as assessed by the overexpression of Hes1 in MSC-DC. Finally, DAPT, a gamma-secretase inhibitor that inhibits Notch signaling, was able to overcome MSC-DC defects. In conclusion, our data suggest that MSC license adult CD34(+) HPC to differentiate into regulatory DC through activation of the Notch pathway.  相似文献   

20.
Mice made unresponsive by repeated injection of staphylococcal enterotoxin B (SEB) contained SEB-specific CD25(+)CD4(+)TCRBV8(+) T cells that were able to transfer their state of unresponsiveness to primary-stimulated T cells. About one-half of these cells stably up-regulated the expression of CD152. We undertook the present study to determine whether CD152(high) cells seen in this system were T regulatory cells responsible for suppression or whether they represented SEB-activated CD4(+) T effector cells. Our results show that, among SEB-specific TCRBV8(+) T cells isolated from unresponsive mice, all CD152(high)CD25(+)CD4(+) T cells expressed Foxp3, the NF required for differentiation and function of natural T regulatory cells. Moreover, suppression by CD25(+)CD4(+)TCRBV8(+) T cells was fully inhibited by anti-CD152 Abs. Following stimulation by soluble CD152-Ig, dendritic cells (DC) isolated from unresponsive mice strongly increased the expression and the function of indoleamine-2,3-dioxygenase (IDO), the enzyme responsible for the catabolism of tryptophan. This capacity to activate IDO was independent of IFN-gamma production by DC because CD152-Ig stimulation of DC isolated from SEB-treated IFN-gamma-deficient animals activated IDO expression and function. Finally, adding 1-methyl-tryptophan, an inhibitor of tryptophan catabolism, increased substantially the capacity of DC from unresponsive animals to stimulate primary T cell response toward SEB. Thus, we conclude that IFN-gamma-independent CD152-mediated activation of tryptophan catabolism by Foxp3(+)CD25(+) T regulatory cells provides DC with immune regulatory activity in mice unresponsive to SEB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号