首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The conserved sequence motif "RxY(T)(S)xx(S)(N)" coordinates flavin binding in NADH:cytochrome b(5) reductase (cb(5)r) and other members of the flavin transhydrogenase superfamily of oxidoreductases. To investigate the roles of Y93, the third and only aromatic residue of the "RxY(T)(S)xx(S)(N)" motif, that stacks against the si-face of the flavin isoalloxazine ring, and P92, the second residue in the motif that is also in close proximity to the FAD moiety, a series of rat cb(5)r variants were produced with substitutions at either P92 or Y93, respectively. The proline mutants P92A, G, and S together with the tyrosine mutants Y93A, D, F, H, S, and W were recombinantly expressed in E. coli and purified to homogeneity. Each mutant protein was found to bind FAD in a 1:1 cofactor:protein stoichiometry while UV CD spectra suggested similar secondary structure organization among all nine variants. The tyrosine variants Y93A, D, F, H, and S exhibited varying degrees of blue-shift in the flavin visible absorption maxima while visible CD spectra of the Y93A, D, H, S, and W mutants exhibited similar blue-shifted maxima together with changes in absorption intensity. Intrinsic flavin fluorescence was quenched in the wild type, P92S and A, and Y93H and W mutants while Y93A, D, F, and S mutants exhibited increased fluorescence when compared to free FAD. The tyrosine variants Y93A, D, F, and S also exhibited greater thermolability of FAD binding. The specificity constant (k(cat)/K(m)(NADH)) for NADH:FR activity decreased in the order wild type > P92S > P92A > P92G > Y93F > Y93S > Y93A > Y93D > Y93H > Y93W with the Y93W variant retaining only 0.5% of wild-type efficiency. Both K(s)(H4NAD) and K(s)(NAD+) values suggested that Y93A, F, and W mutants had compromised NADH and NAD(+) binding. Thermodynamic measurements of the midpoint potential (E degrees ', n = 2) of the FAD/FADH(2) redox couple revealed that the potentials of the Y93A and S variants were approximately 30 mV more positive than that of wild-type cb(5)r (E degrees ' = -268 mV) while that of Y93H was approximately 30 mV more negative. These results indicate that neither P92 nor Y93 are critical for flavin incorporation in cb(5)r and that an aromatic side chain is not essential at position 93, but they demonstrate that Y93 forms contacts with the FAD that effectively modulate the spectroscopic, catalytic, and thermodynamic properties of the bound cofactor.  相似文献   

2.
The gene coding for expression of an endogenous soluble fusion protein comprising a b-type cytochrome-containing domain and a FAD-containing domain has been cloned from rat liver mRNA. The 1461-bp hemoflavoprotein gene corresponded to a protein of 493 residues with the heme- and FAD-containing domains comprising the amino and carboxy termini of the protein, respectively. Sequence analysis indicated the heme and flavin domains were directly analogous to the corresponding domains in microsomal cytochrome b(5) (cb5) and cytochrome b(5) reductase (cb5r), respectively. The full-length fusion protein was purified to homogeneity and demonstrated to contain both heme and FAD prosthetic groups by spectroscopic analyses and MALDI-TOF mass spectrometry. The cb5/cb5r fusion protein was able to utilize both NADPH and NADH as reductants and exhibited both NADPH:ferricyanide (k(cat) = 21.7 s(-1), K(NADPH)(m) = 1 microM. K(FeCN6)(m) = 8 microM) and NADPH:cytochrome c (k(cat) = 8.3 s(-1), K(NADPH)(m) = 1 microM. K(cyt c)(m) = 7 microM) reductase activities with a preference for NADPH as the reduced pyridine nucleotide substrate. NADPH-reduction was stereospecific for transfer of the 4R-proton and involved a hydride transfer mechanism with a kinetic isotope effect of 3.1 for NADPH/NADPD. Site-directed mutagenesis was used to examine the role of two conserved histidine residues, H62 and H85, in the heme domain segment. Substitution of either residue by alanine or methionine resulted in the production of simple flavoproteins that were effectively devoid of both heme and NAD(P)H:cytochrome c reductase activity while retaining NAD(P)H:ferricyanide activity, confirming that the former activity required a functional heme domain. These results have demonstrated that the rat cb5/cb5r fusion protein is homologous to the human variant and has identified the heme and FAD as the sites of interaction with cytochrome c and ferricyanide, respectively. Mutagenesis has confirmed the identity of both axial heme ligands which are equivalent to the corresponding residues in microsomal cytochrome b(5).  相似文献   

3.
Roma GW  Crowley LJ  Davis CA  Barber MJ 《Biochemistry》2005,44(41):13467-13476
Cytochrome b5 reductase (cb5r), a member of the ferredoxin:NADP+ reductase family of flavoprotein transhydrogenases, catalyzes the NADH-dependent reduction of cytochrome b5. Within this family, a conserved "GxGxxP" sequence motif has been implicated in binding reduced pyridine nucleotides. However, Glycine 179, a conserved residue in cb5r primary structures, precedes this six-residue "180GxGxxP185" motif that has been identified as binding the adenosine moiety of NADH. To investigate the role of G179 in NADH complex formation and NAD(P)H specificity, a series of rat cb5r variants were generated, corresponding to G179A, G179P, G179T, and G179V, recombinantly expressed in Escherichia coli and purified to homogeneity. Each mutant protein was found to incorporate FAD in a 1:1 cofactor/protein stoichiometry and exhibited absorption and CD spectra that were identical to those of wild-type cb5r, indicating both correct protein folding and similar flavin environments, while oxidation-reduction potentials for the FAD/FADH2 couple (n = 2) were also comparable to the wild-type protein (E(o)' = -272 mV). All four mutants showed decreased NADH:ferricyanide reductase activities, with kcat decreasing in the order WT > G179A > G179P > G179T > G179V, with the G179V variant retaining only 1.5% of the wild-type activity. The affinity for NADH also decreased in the order WT > G179A > G179P > G179T > G179V, with the Km(NADH) for G179V 180-fold greater than that of the wild type. Both Ks(H4NAD) and Ks(NAD+) values confirmed that the G179 mutants had both compromised NADH- and NAD+-binding affinities. Determination of the NADH/NADPH specificity constant for the various mutants indicated that G179 also participated in pyridine nucleotide selectivity, with the G179V variant preferring NADPH approximately 8000 times more than wild-type cb5r. These results demonstrated that, while G179 was not critical for either flavin incorporation or maintenance of the appropriate flavin environment in cb5r, G179 was required for both effective NADH/NADPH selectivity and to maintain the correct orientation and position of the conserved cysteine in the proline-rich "CGpppM" motif that is critical for optimum NADH binding and efficient hydride transfer.  相似文献   

4.
Cytochrome b5 reductase (cb5r), a member of the flavoprotein transhydrogenase family of oxidoreductase enzymes, catalyzes the transfer of reducing equivalents from the physiological electron donor, NADH, to two molecules of cytochrome b5. We have determined the correct nucleotide sequence for the putative full-length, membrane-associated enzyme from Canis familiaris, and have generated a heterologous expression system for production of a histidine-tagged variant of the soluble, catalytic diaphorase domain, comprising residues I33 to F300. Using a simple two-step chromatographic procedure, the recombinant diaphorase domain has been purified to homogeneity and demonstrated to be a simple flavoprotein with a molecular mass of 31,364 (m/z) that retained both NADH:ferricyanide reductase and NADH:cytochrome b5 reductase activities. The recombinant protein contained a full complement of FAD and exhibited absorption and CD spectra comparable to those of a recombinant form of the rat cytochrome b5 reductase diaphorase domain generated using an identical expression system, suggesting similar protein folding. Oxidation-reduction potentiometric titrations yielded a standard midpoint potential (Eo') for the FAD/FADH2 couple of -273+/-5 mV which was identical to the value obtained for the corresponding rat domain. Thermal denaturation studies revealed that the canine domain exhibited stability comparable to that of the rat protein, confirming similar protein conformations. Initial-rate kinetic studies revealed the canine diaphorase domain retained a marked preference for NADH versus NADPH as reducing substrate and exhibited kcat's of 767 and 600 s(-1) for NADH:ferricyanide reductase and NADH:cytochrome b5 reductase activities, respectively, with Km's of 7, 8, and 12 microM for NADH, K3Fe(CN)6, and cytochrome b5, respectively. Spectral-binding constants (Ks) determined for a variety of NAD+ analogs indicated the highest and lowest affinities were observed for APAD+ (Ks=71 microM) and PCA+ (Ks=>31 mM), respectively, and indicated the binding contributions of the various portions of the pyridine nucleotide. These results provide the first correct sequence for the full-length, membrane-associated form of C. familiaris cb5r and provide a direct comparison of the enzymes from two phylogenetic sources using identical expression systems that indicate that both enzymes have comparable spectroscopic, kinetic, thermodynamic, and structural properties.  相似文献   

5.
A gene has been constructed coding for a unique fusion protein, NADH:cytochrome c reductase, that comprises the soluble heme-containing domain of rat hepatic cytochrome b(5) as the amino-terminal portion of the protein and the soluble flavin-containing domain of rat hepatic cytochrome b(5) reductase as the carboxyl terminus. The gene has been expressed in Escherichia coli resulting in the highly efficient production of a functional hybrid hemoflavoprotein which has been purified to homogeneity by a combination of ammonium sulfate precipitation, affinity chromatography on 5'-ADP agarose, and size-exclusion chromatography. The purified protein exhibited a molecular mass of approximately 46 kDa by polyacrylamide gel electrophoresis and 40,875 Da, for the apoprotein, using mass spectrometry which also confirmed the presence of both heme and FAD prosthetic groups. The fusion protein showed immunological cross-reactivity with both anti-rat cytochrome b(5) and anti-rat cytochrome b(5) reductase antibodies indicating the conservation of antigenic determinants from both native domains. Spectroscopic analysis indicated the fusion protein contained both a b-type cytochrome and flavin chromophors with properties identical to those of the native proteins. Amino-terminal and internal amino acid sequencing confirmed the identity of peptides derived from both the heme- and flavin-binding domains with sequences identical to the deduced amino acid sequence. The isolated fusion protein retained NADH:ferricyanide reductase activity (k(cat) = 8.00 x 10(2) s(-1), K(NADH)(m) = 4 microM, K(FeCN(6))(m) = 11 microM) comparable to that of that of native NADH:cytochrome b(5) reductase and also exhibited both NADH:cytochrome c reductase activity (k(cat) = 2.17 x 10(2) s(-1), K(NADH)(m) = 2 microM, K(FeCN(6))(m) = 11 microM, K(Cyt.c)(m) = 1 microM) and NADH:methemoglobin reductase activity (k(cat) = 4.40 x 10(-1) s(-1), K(NADH)(m) = 3 microM, K(mHb)(m) = 47 microM), the latter two activities indicating efficient electron transfer from FAD to heme and retention of physiological function. This work represents the first successful bacterial expression of a soluble, catalytically competent, rat hepatic cytochrome b(5)-cytochrome b(5) reductase fusion protein that retains the functional properties characteristic of the individual heme and flavin domain.  相似文献   

6.
Recessive congenital methemoglobinemia (RCM, OMIM 250800) arises from defects in either the erythrocytic or microsomal forms of the flavoprotein, cytochrome b5 reductase (cb5r) and was the first disease to be directly associated with a specific enzyme deficiency. Of the 33 verified mutations in cb5r that give rise to either the type I (erythrocytic) or type II (generalized) forms of RCM, three of the mutations, corresponding to P144L, L148P, and R159*, are located in a segment of the primary sequence composed of residues G143 to V171 which serves as a "hinge" or "linker" region between the FAD- and NADH-binding lobes of the protein. With the exception of R159*, which produces a truncated non-functional cb5r resulting in type II RCM, the type I methemoglobinemias resulting from the P144L or L148P mutations have been proposed to be due to decreased enzyme stability. Utilizing a recombinant form of the rat cb5r enzyme, we have generated the P144L, L148P, and P144L/L148P mutants, purified the resulting proteins to homogeneity and characterized their spectroscopic, kinetic, and thermodynamic properties. The three mutant proteins retained full complements of FAD with the P144L and L148P variants being spectroscopically indistinguishable from wild-type cb5r. In contrast, kinetic analyses revealed that the P144L, L148P, and P144L/L148P variants retained only 28, 31, and 8% of wild-type NADH:cytochrome b5 reductase activity, respectively, together with significant alterations in affinity for both NADH and NAD+. In addition, FAD oxidation-reduction potentials were 32, 19, and 65 mV more positive for the mutants than the corresponding FAD/FADH2 couple in native cb5r (E0'=-272 mV). Thermal and proteolytic stability measurements indicated that all three mutants were less stable than the wild-type protein while differential spectroscopy indicated altered pyridine nucleotide binding in all three variants. These results demonstrate that the "hinge" region is important in maintaining the correct orientation of the flavin- and pyridine nucleotide-binding lobes within the protein for efficient electron transfer and that the P144L and L148P mutations disrupt the normal registration of the FAD- and NADH-binding lobes resulting in altered affinities for both the physiological reducing substrate, NADH and its product, NAD+.  相似文献   

7.
Porcine NADH-cytochrome b5 reductase catalytic domain (Pb5R) has the RXY(T/S)+(T/S) flavin-binding motif that is highly conserved among the structurally related family of flavoprotein reductases. Mutations were introduced that alter the Arg(63), Tyr(65), and Ser(99) residues within this motif. The mutation of Tyr(65) to either alanine or phenylalanine destabilized the protein, produced an accelerated release of FAD in the presence of 1.5 M guanidine hydrochloride, and decreased the k(cat) values of the enzyme. These results indicate that Tyr(65) contributes to the stability of the protein and is important in the electron transfer from NADH to FAD. The mutation of Ser(99) to either alanine or valine, and of Arg(63) to either alanine or glutamine increased both the K(m) values for NADH (K(m)(NADH)) and the dissociation constant for NAD(+) (K(d)(NAD+)). However, the mutation of Ser(99) to threonine and of Arg(63) to lysine had very little effect on the K(m)(NADH) and K(d)(NAD+) values, and resulted in small changes in the absorption and circular dichroism spectra. These results suggest that the hydroxyl group of Ser(99) and the positive charge of Arg(63) contribute to the maintenance of the properties of FAD and to the effective binding of Pb5R to both NADH and NAD(+). In addition, the mutation of Arg(63) to either alanine or glutamine increased the apparent K(m) values for porcine cytochrome b5 (Pb5), while changing Arg(63) to lysine did not. The positive charge of Arg(63) may regulate the electron transfer through the electrostatic interaction with Pb5. These results substantiate the important role of the flavin-binding motif in Pb5R.  相似文献   

8.
Hereditary enzymopenic methemoglobinemia is a rare disease that predominantly results from defects in either the erythrocytic (type I) or microsomal (type II) forms of the enzyme NADH:cytochrome b5 reductase (EC 1.6.2.2). All 25 currently identified type I and type II methemoglobinemia mutants have been expressed in Escherichia coli using a novel six histidine-tagged rat cytochrome b5/cytochrome b5 reductase fusion protein designated NADH:cytochrome c reductase (H6NCR). All 25 H6NCR variants were isolated and demonstrated to result in two groups of expression products. The first group of 16 mutants, which included the majority of the type I mutants, included K116Q, P131L, L139P, T183S, M193V, S194P, P211L, L215P, A245T, A245V, C270Y, E279K, V305R, V319M, M340-, and F365-, and yielded full-length fusion proteins that retained variable levels of NADH:cytochrome c reductase (NADH:CR) activity, ranging from approximately 2% (M340-) to 92% (K116Q) of that of the wild-type fusion protein. In contrast, the remaining nine mutants that represented the majority of the type II variants, comprised a second group that included Y109*, R124Q, Q143*, R150*, P162H, V172M, R226*, C270R, and R285*, and resulted in truncated H6NCR variants that retained the amino-terminal cytochrome b5 domain but were devoid of NADH:CR activity due to the absence of the cytochrome b5 reductase flavin domain. Kinetic analyses of the first group of full-length mutant fusion proteins indicated that values for both kcat and Km(NADH) were decreased and increased, respectively, indicating that the various mutations affected both substrate affinity and/or turnover. However, for the second group, the truncated products were the result of incomplete production of the carboxyl-terminal flavin-containing domain or instability of the expression products due to improper folding and/or lack of flavin incorporation.  相似文献   

9.
Mtb (Mycobacterium tuberculosis) FprA (flavoprotein reductase A) is an NAD(P)H-dependent FAD-binding reductase that is structurally related to mammalian adrenodoxin reductase, and which supports the catalytic function of Mtb cytochrome P450s. Trp(359), proximal to the FAD, was investigated in light of its potential role in controlling coenzyme interactions, as observed for similarly located aromatic residues in diflavin reductases. Phylogenetic analysis indicated that a tryptophan residue corresponding to Trp(359) is conserved across FprA-type enzymes and in adrenodoxin reductases. W359A/H mutants of Mtb FprA were generated, expressed and the proteins characterized to define the role of Trp(359). W359A/H mutants exhibited perturbed UV-visible absorption/fluorescence properties. The FAD semiquinone formed in wild-type NADPH-reduced FprA was destabilized in the W359A/H mutants, which also had more positive FAD midpoint reduction potentials (-168/-181 mV respectively, versus the standard hydrogen electrode, compared with -230 mV for wild-type FprA). The W359A/H mutants had lower ferricyanide reductase k(cat) and NAD(P)H K(m) values, but this led to improvements in catalytic efficiency (k(cat)/K(m)) with NADH as reducing coenzyme (9.6/18.8 muM(-1).min(-1) respectively, compared with 5.7 muM(-1).min(-1) for wild-type FprA). Stopped-flow spectroscopy revealed NAD(P)H-dependent FAD reduction as rate-limiting in steady-state catalysis, and to be retarded in mutants (e.g. limiting rate constants for NADH-dependent FAD reduction were 25.4 s(-1) for wild-type FprA and 4.8 s(-1)/13.4 s(-1) for W359A/H mutants). Diminished mutant FAD content (particularly in W359H FprA) highlighted the importance of Trp(359) for flavin stability. The results demonstrate that the conserved Trp(359) is critical in regulating FprA FAD binding, thermodynamic properties, catalytic efficiency and coenzyme selectivity.  相似文献   

10.
Flavocytochrome P450 BM3 is a member of the diflavin reductase enzyme family. Members include cytochrome P450 reductase, nitric-oxide synthase, methionine synthase reductase, and novel oxidoreductase 1. These enzymes show a strong preference for NADPH over NADH as reducing coenzyme. An aromatic residue stacks over the FAD isoalloxazine ring in each enzyme, and in some cases it is important in controlling coenzyme specificity. In P450 BM3, the aromatic residue inferred from sequence alignments to stack over the FAD is Trp-1046. Mutation to Ala-1046 and His-1046 effected a remarkable coenzyme specificity switch. P450 BM3 W1046A/W106H FAD and reductase domains are efficient NADH-dependent ferricyanide reductases with selectivity coefficients (k(cat)/K(m)(NADPH)/k(cat)/K(m)(NADH)) of 1.5, 67, and 8571 for the W1046A, W1046H, and wild-type reductase domains, respectively. Stopped-flow photodiode array absorption studies indicated a charge-transfer intermediate accumulated in the W1046A FAD domain (and to a lesser extent in the W1046H FAD domain) and was attributed to formation of a reduced FADH(2)-NAD(P)(+) charge-transfer species, suggesting a relatively slow rate of release of NAD(P)(+) from reduced enzymes. Unlike wild-type enzymes, there was no formation of the blue semiquinone species observed during reductive titration of the W0146A/W146H FAD and reductase domains with dithionite or NAD(P)H. This was a consequence of elevation of the semiquinone/hydroquinone couple of the FAD with respect to the oxidized/semiquinone couple, and a concomitant approximately 100-mV elevation in the 2-electron redox couple for the enzyme-bound FAD (-320, -220, and -224 mV in the wild-type, W1046A, and W1046H FAD domains, respectively).  相似文献   

11.
M C Bewley  C C Marohnic  M J Barber 《Biochemistry》2001,40(45):13574-13582
Cytochrome b5 reductase (cb5r) (EC 1.6.6.2) catalyzes the reduction of two molecules of cytochrome b5 using NADH as the physiological electron donor. The structure of pig cb5r at 2.4 A resolution was previously reported in the literature, but it was inconsistent with the biochemistry; for example, K83 and C245 were both implicated in the mechanism, but were not located at the active site. To address this problem, we have determined the structures of cb5r from rat at 2.0 A resolution and in a complex with NAD+ at 2.3 A resolution. We found significant differences throughout the rat structure compared to that of pig, including the locations of the lysine and cysteine residues mentioned above. To test the structural models, we made single amino acid substitutions of this lysine and showed that all substitutions produced correctly folded proteins and exhibited normal flavin behavior. However, the apparent kcat(NADH) decreased, and the apparent K(m) for NADH increased; the K(m)'s for cytochrome b5 were unchanged relative to that of the wild type. The largest effect was for the glutamate-substituted protein, which was further characterized using a charge transfer assay and found to be less efficient at NADH utilization than the wild type. These results are consistent with a role for this lysine in stabilizing the NADH-bound form of cb5r. We have concluded that the pig structure was mistraced in several regions and have reinterpreted mutants in these regions that give rise to the hereditary disease methemoglobinemia.  相似文献   

12.
The X+-linked chronic granulomatous disease (X+-CGD) variants are natural mutants characterized by defective NADPH oxidase activity but with normal Nox2 expression. According to the three-dimensional model of the cytosolic Nox2 domain, most of the X+-CGD mutations are located in/or close to the FAD/NADPH binding regions. A structure/function study of this domain was conducted in X+-CGD PLB-985 cells exactly mimicking 10 human variants: T341K, C369R, G408E, G408R, P415H, P415L, Δ507QKT509-HIWAinsert, C537R, L546P, and E568K. Diaphorase activity is defective in all these mutants. NADPH oxidase assembly is normal for P415H/P415L and T341K mutants where mutation occurs in the consensus sequences of NADPH- and FAD-binding sites, respectively. This is in accordance with their buried position in the three-dimensional model of the cytosolic Nox2 domain. FAD incorporation is abolished only in the T341K mutant explaining its absence of diaphorase activity. This demonstrates that NADPH oxidase assembly can occur without FAD incorporation. In addition, a defect of NADPH binding is a plausible explanation for the diaphorase activity inhibition in the P415H, P415L, and C537R mutants. In contrast, Cys-369, Gly-408, Leu-546, and Glu-568 are essential for NADPH oxidase complex assembly. However, according to their position in the three-dimensional model of the cytosolic domain of Nox2, only Cys-369 could be in direct contact with cytosolic factors during oxidase assembly. In addition, the defect in oxidase assembly observed in the C369R, G408E, G408R, and E568K mutants correlates with the lack of FAD incorporation. Thus, the NADPH oxidase assembly process and FAD incorporation are closely related events essential for the diaphorase activity of Nox2.  相似文献   

13.
Wang H  Lei B  Tu SC 《Biochemistry》2000,39(26):7813-7819
Luminous bacteria contain three types of NAD(P)H-FMN oxidoreductases (flavin reductases) with different pyridine nucleotide specificities. Among them, the NADPH-specific flavin reductase from Vibrio harveyi exhibits a uniquely high preference for NADPH. In comparing the substrate specificity, crystal structure, and primary sequence of this flavin reductase with other structurally related proteins, we hypothesize that the conserved Arg203 residue of this reductase is critical to the specific recognition of NADPH. The mutation of this residue to an alanine resulted in only small changes in the binding and reduction potential of the FMN cofactor, the K(m) for the FMN substrate, and the k(cat). In contrast, the K(m) for NADPH was increased 36-fold by such a mutation. The characteristic perturbation of the FMN cofactor absorption spectrum upon NADP(+) binding by the wild-type reductase was abolished by the same mutation. While the k(cat)/K(m,NADPH) was reduced from 1990 x 10(5) to 46 x 10(5) M(-1) min(-1) by the mutation, the mutated variant showed a k(cat)/K(m,NADH) of 4 x 10(5) M(-1) min(-1), closely resembling that of the wild-type reductase. The deuterium isotope effects (D)V and (D)(V/K) for (4R)-[4-(2)H]-NADPH were 1.7 and 1.4, respectively, for the wild-type reductase but were increased to 3.8 and 4.0, respectively, for the mutated variant. Such a finding indicates that the rates of NADPH and NADP(+) dissociation in relation to the isotope-sensitive redox steps were both increased as a result of the mutation. These results all provide support to the critical role of the Arg203 in the specific recognition and binding of NADPH.  相似文献   

14.
Methemoglobinemia, the first hereditary disease to be identified that involved an enzyme deficiency, has been ascribed to mutations in the enzyme cytochrome b(5) reductase. A variety of defects in either the erythrocytic or microsomal forms of the enzyme have been identified that give rise to the type I or type II variant of the disease, respectively. The positions of the methemoglobinemia-causing mutations are scattered throughout the protein sequence, but the majority of the nontruncated mutants that produce type II symptoms occur close to the flavin adenine dinucleotide (FAD) cofactor binding site. While X-ray structures have been determined for the soluble, flavin-containing diaphorase domains of the rat and pig enzymes, no X-ray or NMR structure has been described for the human enzyme or any of the methemoglobinemia variants. S127P, a mutant that causes type II methemoglobinemia, was the first to be positively identified and have its spectroscopic and kinetic properties characterized that revealed altered nicotinamide adenine dinucleotide hydride (NADH) substrate binding behavior. To understand these changes at a structural level, we have determined the structure of the S127P mutant of rat cytochrome b(5) reductase to 1.8 A resolution, providing the first structural snapshot of a cytochrome b(5) reductase mutant that causes methemoglobinemia. The high-resolution structure revealed that the adenosine diphosphate (ADP) moiety of the FAD prosthetic group is displaced into the corresponding ADP binding site of the physiological substrate, NADH, thus acting as a substrate inhibitor which is consistent with both the spectroscopic and kinetic data.  相似文献   

15.
A series of truncated forms of gp91phox were expressed in Escherichia coli in which the N-terminal hydrophobic transmembrane region was replaced with a portion of the highly soluble bacterial protein thioredoxin. TRX-gp91phox (306-569), which contains the putative FAD and NADPH binding sites, showed weak NADPH-dependent NBT (nitroblue tetrazolium) reductase activity, whereas TRX-gp91phox (304-423) and TRX-gp91phox (424-569) were inactive. Activity saturated at about a 1:1 molar ratio of FAD to TRX-gp91phox (306-569), and showed the same K(m) for NADPH as that for superoxide generating activity by the intact enzyme. Activity was not inhibited by superoxide dismutase, indicating that it was not mediated by superoxide, but was blocked by an inhibitor of the respiratory burst oxidase, diphenylene iodonium. In the presence of Rac1, the cytosolic regulatory protein p67phox stimulated the NBT reductase activity, but p47phox had no effect. Truncated p67phox containing the activation domain (residues 199-210) [C.-H. Han, J.R. Freeman, T. Lee, S.A. Motalebi, and J.D. Lambeth (1998) J. Biol. Chem. 273, 16663-16668] stimulated activity approximately 2-fold, whereas forms mutated or lacking this region failed to stimulate the activity. Our data indicate that: (i) TRX-gp91phox (306-569) contains binding sites for both pyridine and flavin nucleotides; (ii) this flavoprotein domain shows weak diaphorase activity; and (iii) the flavin-binding domain of gp91phox is the target of regulation by the activation domain of p67phox.  相似文献   

16.
One of the major processes for aerobic biodegradation of aromatic compounds is initiated by Rieske dioxygenases. Benzoate dioxygenase contains a reductase component, BenC, that is responsible for the two-electron transfer from NADH via FAD and an iron-sulfur cluster to the terminal oxygenase component. Here, we present the structure of BenC from Acinetobacter sp. strain ADP1 at 1.5 A resolution. BenC contains three domains, each binding a redox cofactor: iron-sulfur, FAD and NADH, respectively. The [2Fe-2S] domain is similar to that of plant ferredoxins, and the FAD and NADH domains are similar to members of the ferredoxin:NADPH reductase superfamily. In phthalate dioxygenase reductase, the only other Rieske dioxygenase reductase for which a crystal structure is available, the ferredoxin-like and flavin binding domains are sequentially reversed compared to BenC. The BenC structure shows significant differences in the location of the ferredoxin domain relative to the other domains, compared to phthalate dioxygenase reductase and other known systems containing these three domains. In BenC, the ferredoxin domain interacts with both the flavin and NAD(P)H domains. The iron-sulfur center and the flavin are about 9 A apart, which allows a fast electron transfer. The BenC structure is the first determined for a reductase from the class IB Rieske dioxygenases, whose reductases transfer electrons directly to their oxygenase components. Based on sequence similarities, a very similar structure was modeled for the class III naphthalene dioxygenase reductase, which transfers electrons to an intermediary ferredoxin, rather than the oxygenase component.  相似文献   

17.
Escherichia coli general NAD(P)H:flavin oxidoreductase (Fre) does not have a bound flavin cofactor; its flavin substrates (riboflavin, FMN, and FAD) are believed to bind to it mainly through the isoalloxazine ring. This interaction was real for riboflavin and FMN, but not for FAD, which bound to Fre much tighter than FMN or riboflavin. Computer simulations of Fre.FAD and Fre.FMN complexes showed that FAD adopted an unusual bent conformation, allowing its ribityl side chain and ADP moiety to form an additional 3.28 H-bonds on average with amino acid residues located in the loop connecting Fbeta5 and Falpha1 of the flavin-binding domain and at the proposed NAD(P)H-binding site. Experimental data supported the overlapping binding sites of FAD and NAD(P)H. AMP, a known competitive inhibitor with respect to NAD(P)H, decreased the affinity of Fre for FAD. FAD behaved as a mixed-type inhibitor with respect to NADPH. The overlapped binding offers a plausible explanation for the large K(m) values of Fre for NADH and NADPH when FAD is the electron acceptor. Although Fre reduces FMN faster than it reduces FAD, it preferentially reduces FAD when both FMN and FAD are present. Our data suggest that FAD is a preferred substrate and an inhibitor, suppressing the activities of Fre at low NADH concentrations.  相似文献   

18.
The catabolism of toxic phenols in the thermophilic organism Bacillus thermoglucosidasius A7 is initiated by a two-component enzyme system. The smaller flavin reductase PheA2 component catalyzes the NADH-dependent reduction of free FAD according to a ping-pong bisubstrate-biproduct mechanism. The reduced FAD is then used by the larger oxygenase component PheA1 to hydroxylate phenols to the corresponding catechols. We have determined the x-ray structure of PheA2 containing a bound FAD cofactor (2.2 A), which is the first structure of a member of this flavin reductase family. We have also determined the x-ray structure of reduced holo-PheA2 in complex with oxidized NAD (2.1 A). PheA2 is a single domain homodimeric protein with each FAD-containing subunit being organized around a six-stranded beta-sheet and a capping alpha-helix. The tightly bound FAD prosthetic group (K(d) = 10 nm) binds near the dimer interface, and the re face of the FAD isoalloxazine ring is fully exposed to solvent. The addition of NADH to crystalline PheA2 reduced the flavin cofactor, and the NAD product was bound in a wide solvent-accessible groove adopting an unusual folded conformation with ring stacking. This is the first observation of an enzyme that is very likely to react with a folded compact pyridine nucleotide. The PheA2 crystallographic models strongly suggest that reactive exogenous FAD substrate binds in the NADH cleft after release of NAD product. Nanoflow electrospray mass spectrometry data indeed showed that PheA2 is able to bind one FAD cofactor and one FAD substrate. In conclusion, the structural data provide evidence that PheA2 contains a dual binding cleft for NADH and FAD substrate, which alternate during catalysis.  相似文献   

19.
Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the NADH-linked reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as cofactor. MTHFR is unusual among flavin oxidoreductases because it contains a conserved, negatively rather than positively charged amino acid (aspartate 120) near the N1-C2=O position of the flavin. At this location, Asp 120 is expected to influence the redox properties of the enzyme-bound FAD. Modeling of the CH(3)-H(4)folate product into the enzyme active site suggests that Asp 120 may also play crucial roles in folate binding and catalysis. We have replaced Asp 120 with Asn, Ser, Ala, Val, and Lys and have characterized the mutant enzymes. Consistent with a loss of negative charge near the flavin, the midpoint potentials of the mutants increased from 17 to 30 mV. A small kinetic effect on the NADH reductive half-reaction was also observed as the mutants exhibited a 1.2-1.5-fold faster reduction rate than the wild-type enzyme. Catalytic efficiency (k(cat)/K(m)) in the CH(2)-H(4)folate oxidative half-reaction was decreased significantly (up to 70000-fold) and in a manner generally consistent with the negative charge density of position 120, supporting a major role for Asp 120 in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. Asp 120 is also intimately involved in folate binding as increases in the apparent K(d) of up to 15-fold were obtained for the mutants. Examining the E(red) + CH(2)-H(4)folate reaction at 4 degrees C, we obtained, for the first time, evidence for the rapid formation of a reduced enzyme-folate complex with wild-type MTHFR. The more active Asp120Ala mutant, but not the severely impaired Asp120Lys mutant, demonstrated the species, suggesting a connection between the extent of complex formation and catalytic efficiency.  相似文献   

20.
Roitel O  Scrutton NS  Munro AW 《Biochemistry》2003,42(36):10809-10821
Cys-999 is one component of a triad (Cys-999, Ser-830, and Asp-1044) located in the FAD domain of flavocytochrome P450 BM3 that is almost entirely conserved throughout the diflavin reductase family of enzymes. The role of Cys-999 has been studied by steady-state kinetics, stopped-flow spectroscopy, and potentiometry. The C999A mutants of BM3 reductase (containing both FAD and FMN cofactors) and the isolated FAD domain are substantially compromised in their capacity to reduce artificial electron acceptors in steady-state turnover with either NADPH or NADH as electron donors. Stopped-flow studies indicate that this is due primarily to a substantially slower rate of hydride transfer from nicotinamide coenzyme to FAD cofactor in the C999A enzymes. The compromised rates of hydride transfer are not attributable to altered thermodynamic properties of the flavins. A reduced enzyme-NADP(+) charge-transfer species is populated following hydride transfer in the wild-type FAD domain, consistent with the slow release of NADP(+) from the 2-electron-reduced enzyme. This intermediate does not accumulate in the C999A FAD domain or wild-type and C999A BM3 reductases, suggesting more rapid release of NADP(+) from these enzyme forms. Rapid internal electron transfer from FAD to FMN in wild-type BM3 reductase releases NADP(+) from the nicotinamide-binding site, thus preventing the inhibition of enzyme activity through the accumulation of a stable FADH(2)-NADP(+) charge-transfer complex. Hydride transfer is reversible, and the observed rate of oxidation of the 2-electron-reduced C999A BM3 reductase and FAD domain is hyperbolically dependent on NADP(+) concentration. With the wild-type BM3 reductase and FAD domain, the rate of flavin oxidation displays an unusual dependence on NADP(+) concentration, consistent with a two-site binding model in which two coenzyme molecules bind to catalytic and regulatory regions (or sites) within a bipartite coenzyme binding site. A kinetic model is proposed in which binding of coenzyme to the regulatory site hinders sterically the release of NADPH from the catalytic site. The results are discussed in the light of kinetic and structural studies on mammalian cytochrome P450 reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号