首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Costs of fly control practices were estimated for 26 New York and Maryland dairy farms. Objectives were to characterize existing practices, compare them with the cost of more frequent and complete manure removal to reduce fly breeding, and to compare costs of manure removal and insecticide application. Information was collected in scouting visits and personal interviews of farm operators. Equipment, labor, and bedding costs were included for manure removal. Insecticide application costs included chemicals and labor for application. A typical farm with a stanchion barn had manure removal costs of $0.348 per cow per day. Recommended changes would increase costs by $0.016-0.033 per cow per day. Insecticide costs averaged $0.021 per cow per day. It may be possible to eliminate many of the insecticide applications on the farms by using the recommended 7-d manure removal practice. Even if insecticides are not eliminated entirely, increased manure removal costs would be offset by some reduction in insecticide cost. This also would have the additional benefit of greatly slowing the development of insecticide resistance by the flies.  相似文献   

2.
Cultivating algae on nitrogen (N) and phosphorus (P) in animal manure effluents presents an alternative to the current practice of land application. The objective of this study was to determine values for productivity, nutrient content, and nutrient recovery using filamentous green algae grown in outdoor raceways at different loading rates of raw and anaerobically digested dairy manure effluent. Algal turf scrubber raceways (30m(2) each) were operated in central Maryland for approximately 270 days each year (roughly April 1-December 31) from 2003 to 2006. Algal biomass was harvested every 4-12 days from the raceways after daily additions of manure effluent corresponding to loading rates of 0.3 to 2.5g total N (TN) and 0.08 to 0.42g total P (TP) m(-2)d(-1). Mean algal productivity values increased from approximately 2.5g DW m(-2)d(-1) at the lowest loading rate (0.3g TN m(-2)d(-1)) to 25g DW m(-2)d(-1) at the highest loading rate (2.5g TN m(-2)d(-1)). Mean N and P contents in the dried biomass increased 1.5-2.0-fold with increasing loading rate up to maximums of 7% N and 1% P (dry weight basis). Although variable, algal N and P accounted for roughly 70-90% of input N and P at loading rates below 1g TN, 0.15g TP m(-2)d(-1). N and P recovery rates decreased to 50-80% at higher loading rates. There were no significant differences in algal productivity, algal N and P content, or N and P recovery values from raceways with carbon dioxide supplementation compared to values from raceways without added carbon dioxide. Projected annual operational costs are very high on a per animal basis ($780 per cow). However, within the context of reducing nutrient inputs in sensitive watersheds such as the Chesapeake Bay, projected operational costs of $11 per kgN are well below the costs cited for upgrading existing water treatment plants.  相似文献   

3.
Different mixtures were digested in a single-stage, batch, mixed, laboratory scale mesophilic anaerobic digester at the Biomass Research Centre Laboratory (University of Perugia). The yield and the composition of biogas from the different substrates were evaluated and the cumulative curves were estimated. Two experimental campaigns were carried out, the first on three mixtures (chicken, pig and bovine manures), the second on animal and vegetal biomasses (chicken and cow manure, olive husk) with different inocula (rumen fluid and digested sludge). In the first campaign pig manure mixture showed the maximum biogas production (0.35 Nm3/kg) and energy content (1.35 kWh/kg VS); in the second one the differences in produced biogas from the different inocula were analyzed: olive husk with piggery manure anaerobically digested as inoculum showed the higher biogas (0.28 Nm3/kg VS) and methane yield (0.11 Nm3/kg VS), corresponding to an energetic content of 1.07 kWh/kg VS. All data obtained from the laboratory scale anaerobic digester are comparable to the values in literature for several biomass and in particular for olive husk, dairy manure and chicken manure.  相似文献   

4.
Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.  相似文献   

5.
An alternative to land spreading of manure is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to evaluate the fertilizer value of dried algal biomass that had been grown using anaerobically digested dairy manure. Results from a flask study using two soils amended with algal biomass showed that 3% of total algal nitrogen (N) was present as plant available N at day 0. Approximately 33% of algal N was converted to plant available N within 21 days at 25 degrees C in both soils. Levels of Mehlich-3 extractable phosphorus (P) in the two soils rose with increasing levels of algal amendment but were also influenced by existing soil P levels. Results from plant growth experiments showed that 20-day old cucumber and corn seedlings grown in algae-amended potting mix contained 15-20% of applied N, 46-60% of available N, and 38-60% of the applied P. Seedlings grown in algae-amended potting mixes were equivalent to those grown with comparable levels of fertilizer amended potting mixes with respect to seedling dry weight and nutrient content. These results suggest that dried algal biomass produced from treatment of anaerobically digested dairy manure can substitute for commercial fertilizers used for potting systems.  相似文献   

6.
We investigated the extent to which nitrogenous and phosphorus nutrients from liquid anaerobic digestates could be recycled for photosynthetic growth of a microalga, Scenedesmus sp. AMDD. Digestates recovered from the anaerobic digestion of cow manure and swine manure and a co-digestion of swine manure and algal biomass were diluted in distilled water and used for algal growth with and without supplemental CO2 addition. Nutrient assimilation and final biomass yield were retarded in all but the swine manure/algae co-digestate cultures supplemented with high CO2. Swine manure digestate cultures supplemented with the typical complement of micronutrients normally added with a commonly used growth medium or with Fe/EDTA failed to grow any better than unamended controls. When the culture medium was prepared by blending swine manure digestate with 25 or 50 % algal biomass digestate, diluting it with lake water or by supplementing with magnesium, nutrient assimilation and final algal biomass yields were maximized, indicating that magnesium was critically limiting for algal growth in swine manure digestates. Magnesium amendment thus appears to be essential if nutrients from swine manure digestates are recycled for algal growth. No such requirement is necessary for recycling nutrients from digestates generated wholly or in part from algal biomass.  相似文献   

7.
The adoption of intensive production systems, such as compost bedded pack (CB) and freestall (FS), has increased recently in tropical regions, mainly replacing the drylot system (DL). Thus, our objectives were to compare production costs, economic outcomes, and risk of dairy operations in CB, FS, and DL systems. We collected data from 2 181 Brazilian farms over 120 consecutive months; 960 farms (144 CB, 133 FS, and 683 DL) met our selection criteria. All costs were modeled for two animal production categories: milking cows and non-milking animals. We used a regression model that included linear and quadratic parameters, and we added the production system as a fixed variable for all parameters tested with this model. Consultant, year, herd, and herd × system interaction were included in the model as random variables. Further, we simulated annual technical and economic indexes per farm. In addition, we developed a risk analysis to measure the probability of negative profit of the farms based on a 14-year historical series of milk prices. All production costs were affected by the system. Feed, medicine, sundry, and labor costs per farm per year were greater in DL farms when milk yield (MY) was greater than 3 500 L/day. The variables such as milk yield, assets per liter, asset turnover rate, return on assets, operational profit, profit per cow, and per liter of milk variables were greater in CB and FS with high MY (>3 000 L/day). Nonetheless, DL had the greatest economic indexes with a lower MY (<3 000 L/day), lower operating costs, and greater economic outcomes. The risk analysis indicated that the probability of negative profit (risk) was reduced for CB and FS as MY increased, but DL had the lowest risk with low MY levels. In conclusion, we suggest DL as the most attractive system for farms with MY between 150 and 3 000 L of milk/day as the DL had the lowest risk and the greatest profit in this production scale. Despite similar outcomes for CB and FS in most of the farms, the profit per cow ($/year), assets turnover rate (%), risk (%) and expected profit ($/L) analysis indicated that CB could be recommended for farms with MY greater than 3 200 L of milk/day, whereas based on risk (%) and expected profit ($/L), FS would be the most profitable system in dairies producing more than 8 000 L of milk/day per farm.  相似文献   

8.
Using algae to simultaneously treat wastewater and produce energy products has potential environmental and economic benefits. This study evaluates the life cycle energy, greenhouse gas (GHG) emissions, eutrophication potential, and cost impacts of incorporating an algal turf scrubber (ATS) into a treatment process for dairy wastewater. A life cycle inventory and cost model was developed to simulate an ATS treatment system where harvested algae would be used to generate biogas for process heat and electricity generation. Modeling results show that using an ATS significantly reduces eutrophication impacts by reducing chemical oxygen demand, nitrogen, and phosphorus in the wastewater. With low water recirculation rates through the ATS and high algae productivity, inclusion of the ATS results in net energy displacement and a reduction of GHG emissions compared to a system with no ATS. However, if high water recirculation rates are used or if algae biosolids from the digester are dried, the system results in a net increase in energy consumption and GHG emissions. The life cycle treatment cost was estimated to be $1.42 USD per cubic meter of treated wastewater. At this cost, using an ATS would only be cost effective for dairies if they received monetary credits for improved water quality on the order of $3.83 per kilogram of nitrogen and $9.57 per kilogram of phosphorus through, for example, nutrient trading programs.  相似文献   

9.
Reproductive efficiency in the dairy herd is the most important factor for its economic success and a major concern for dairy farmers when using artificial insemination (AI) or natural service (NS). Our objectives were to estimate, compare and analyse the costs associated with breeding cattle by do-it-yourself (DIY) AI and NS and identify the factors that influence them, under typical dairy farming conditions in Greece. A simulation study was designed based on data from 120 dairy cattle farms that differed in size (range 40 to 285 cows) and milk production level (4000 to 9300 kg per cow per year). Different scenarios were employed to estimate costs associated directly with AI and NS as well as potentially extended calving intervals (ECI) due to AI. Results showed that bull maintenance costs for NS were €1440 to €1670 per year ($1,820 to $2,111). Direct AI costs were higher than those for NS for farms with more than 30 cows and ECI constituted a considerable additional burden. In fact, amongst the factors that affected the amount of milk needed to cover total extra AI costs, number of days open was the dominant one. Semen, feed and heifer prices had a very small effect. When, hypothetically, use of NS bulls results in a calving interval of 12 months, AI daughters with a calving interval of 13.5 months have to produce about 705 kg of additional milk in order to cover the extra cost. Their actual milk production, however, exceeds this limit by more than 25%. When real calving intervals are considered (13.0 v. 13.7 months for NS and AI, respectively) AI daughters turn out to produce more than twice the additional amount of milk needed. It was concluded that even under less than average management conditions, AI is more profitable than the best NS scenario. The efficient communication of this message should be a primary concern of the AI industry.  相似文献   

10.
Biogas production on dairy farms is promoted as a climate change measure since it captures methane, a greenhouse gas emitted by manure, and produces renewable energy. Digestate is a by‐product of biogas production and is often used for nutrient recycling in a similar way as traditional manure. Despite having similar functions, manure and digestate have different behaviors related to nitrogen recycling and nitrogen emissions which are significant agricultural and environmental concerns of manure. This paper provides an insight into the impact of biogas production on nitrogen emissions and nitrogen recycling issues of the current dairy farming practice. Using the Substance Flow Analysis (SFA) approach, we analyzed the changes on three levels: manure handling, dairy farm, and the whole chain. Four biogas production options on a Dutch dairy farm related to types and sources of feedstocks were considered. We quantified biogas output, nitrogen fertilizer replacement percentage (%) and consequential nitrogen emissions (kgN/year; kgN/m3 biogas produced) of these productions in comparison with the baseline of current dairy farming without biogas. We conclude that biogas production options with additional feedstocks will cause profound changes in the nitrogen recycling on dairy farms and the nitrogen emissions at the chain level. Besides, the results show that determining the optimal biogas production option can be challenging as the evaluation is highly dependent on the used nitrogen indicator and the included level of analysis. Our findings show how SFA and a multilevel perspective can give a broader understanding of environmental trade‐offs.  相似文献   

11.
An alternative to land spreading of manure effluents is to mass-culture algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to determine how the fatty acid (FA) content and composition of algae respond to changes in the type of manure, manure loading rate, and to whether the algae was grown with supplemental carbon dioxide. Algal biomass was harvested weekly from indoor laboratory-scale algal turf scrubber (ATS) units using different loading rates of raw and anaerobically digested dairy manure effluents and raw swine manure effluent. Manure loading rates corresponded to N loading rates of 0.2 to 1.3 g TN m−2 day−1 for raw swine manure effluent and 0.3 to 2.3 g TN m−2 day−1 for dairy manure effluents. In addition, algal biomass was harvested from outdoor pilot-scale ATS units using different loading rates of raw and anaerobically digested dairy manure effluents. Both indoor and outdoor units were dominated by Rhizoclonium sp. FA content values of the algal biomass ranged from 0.6 to 1.5% of dry weight and showed no consistent relationship to loading rate, type of manure, or to whether supplemental carbon dioxide was added to the systems. FA composition was remarkably consistent among samples and >90% of the FA content consisted of 14:0, 16:0, 16:1ω7, 16:1ω9, 18:0, 18:1ω9, 18:2 ω6, and 18:3ω3.  相似文献   

12.
A number of researchers have verified the inhibitory effects of elevated H2 concentrations on various anaerobic fermentation processes. The objective of this work was to investigate the potential for using hydrogen gas production to predict upsets in anaerobic digesters operating on dairy cattle manure. In an ammonia nitrogen overload experiment, urea was added to the experimental digesters to obtain increased ammonia concentrations (600, 1,500, or 3,000 mg N/l). An increase in urea concentration resulted in an initial cessation of H2 production followed by an increase in H2 formation. Additions of 600, 1,500, or 3,000 mg N/l initially resulted in the reduction of biogas H2 concentrations. After 24 h, the H2 concentration increased in the 600 and 1,500 mg N/l digesters, but production remained inhibited in the 3,000 mg N/l digesters. Both methane and total biogas production decreased following urea addition. Volatile solids reduction also decreased during these periods. The digester effluent pH and alkalinity increased due to the increased NH4 formed with added urea. Based on these results, changes in H2 concentration could be a useful parameter for monitoring changes due to increased NH3 in dairy cattle manure anaerobic digesters.  相似文献   

13.
This study aimed to investigate potential methane production through anaerobic digestion of dairy manure and co‐digestion with maize silage. Two different anaerobic reactor configurations (single‐stage continuously stirred tank reactor [CSTR] and hybrid anaerobic digester) were used and biogas production performances for each reactor were compared. The HR was planned to enable phase separation in order to improve process stability and biogas production under higher total solids loadings (≥4%). The systems were tested under six different organic loading rates increased steadily from 1.1 to 5.4 g VS/L.d. The CSTR exhibited lower system stability and biomass conversion efficiency than the HR. The specific biogas production of the hybrid system was between 440 and 320 mL/gVS with 81–65% volatile solids (VS) destruction. The hybrid system provided 116% increase in specific biogas production and VS destruction improved by more than 14%. When MS was co‐digested together with dairy manure, specific biogas production rates increased about 1.2‐fold. Co‐digestion was more beneficial than mono‐material digestion. The hybrid system allowed for generating methane enriched biogas (>75% methane) by enabling phase separation in the reactor. It was observed that acidogenic conditions prevailed in the first two compartments and the following two segments as methanogenic conditions were observed. The pH of the acidogenic part ranged between 4.7 and 5.5 and the methanogenic part was between 6.8 and 7.2.  相似文献   

14.
The objective of this study was to investigate the feasibility of using psychrophilic anaerobic digestion in sequencing batch reactors (PADSBRs) to co-digest grinded swine carcasses and swine manure slurry at 20 degrees C and 25 degrees C. The PADSBRs were operated on two-week and four-week treatment cycle lengths, which included the fill, react, and draw phases. Two carcass loading rates (CLRs) were tested, that is 20 and 40g of carcass per litre of manure, which were equivalent to 4 and 8 times, respectively, the normal mortality rate on commercial farms. The PADSBR performance was compared to that of PADSBRs operated at 25 degrees C and fed manure only. The addition of swine carcass to PADSBR feed did not affect the stability of the bioreactors at both CLRs. The performance of the PADSBRs co-digesting swine carcasses was not statistically different from the control in terms of biogas production and quality. There was no accumulation of volatile fatty acids in the bioreactors at the end of the treatment cycle. The mixed-liquor pH and alkalinity remained within acceptable ranges for the anaerobic microflora. Also, there was no operational problem caused by the formation of foam and scum in the system.  相似文献   

15.
Summary A novel anaerobic hybrid reactor (AHR) configuration incorporating floating support media for biomass immobilization and biogas recirculation for enhanced mixing was used for anaerobic digestion of dairy manure. No pretreatment or solid liquid separation was applied. The reactor was operated at high influent volatile solids (VS) and organic loading rates (OLR) of up to 9.87% and 7.30 g VS/l day, respectively. After 149 days of continuous operation the results revealed that a high amount (38.1 g VSS) of biomass was able to attach itself to the support medium being used. The investigated AHR configuration achieved COD, BOD, TS, and VS removal efficiencies of 48–63, 64–78, 55–65, and 59–68%, respectively, at a hydraulic retention time (HRT) of 15 days. The corresponding average methane production value obtained in this study was 0.191 l/g VS added.  相似文献   

16.
Biogas produced from anaerobic digestion is a versatile and environment friendly fuel which traditionally utilizes cattle dung as the substrate. In the recent years, owing to its high content of biodegradable compounds, algal biomass has emerged as a potential feedstock for biogas production. Moreover, the ability of algae to treat wastewater and fix CO2 from waste gas streams makes it an environmental friendly and economically feasible feedstock. The present review focuses on the possibility of utilizing wastewater as the nutrient and waste gases as the CO2 source for algal biomass production and subsequent biogas generation. Studies describing the various harvesting methods of algal biomass as well as its anaerobic digestion have been compiled and discussed. Studies targeting the most recent advancements on biogas enrichment by algae have been discussed. Apart from highlighting the various advantages of utilizing algal biomass for biogas production, limitations of the process such as cell wall resistivity towards digestion and inhibitions caused due to ammonia toxicity and the possible strategies for overcoming the same have been reviewed. The studies compiled in the present review indicate that if the challenges posed in translating the lab scale studies on phycoremediation and biogas production to pilot scale are overcome, algal biogas could become the sustainable and economically feasible source of renewable energy.  相似文献   

17.
Aerosols have been suspected to transport food pathogens and contaminate fruits and vegetables grown in close proximity to concentrated animal feeding operations, but studies are lacking that substantiate such transport. To monitor the potential transport of bacteria originated from fresh or dry manure through aerosols on a dairy, we identified by 16S rRNA sequencing, bacteria in aerosols collected within 2 to 3 meters from dairy cows at two dairies. Gram-positive Firmicutes were predominant in aerosols from a dairy in Sonoma, California, and surrounded by vineyards, in contrast to sequences of Gram-negative Proteobacteria predominant in aerosols from a dairy in Modesto, California, also surrounded by other dairies. Although Firmicutes represented approximately 50% of the 10 most abundant sequences, aerosols from the Sonoma dairy also contained sequences of Bacteriodetes and Actinobacteria, identified previously with animal feces. While none of the top 10 sequences from fresh or dry manure from Modesto dairy were detected in aerosols, two of the sequences from the phylum Bacteriodetes and one from class Clostridia from fresh manure were detected in aerosols from Sonoma. Interestingly, none of the sequences from dry manure were in the top 10 sequences in aerosols from both dairies. The 10 most abundant sequences in aerosols from the Modesto dairy were all from Proteobacteria and nearly half of them were from genus Massilia, which have been isolated previously from immune-compromised people and aerosols. We conclude that the predominant bacteria in aerosols are diverse among locations and that they do not reflect the predominant species of bacteria present in cow feces and/or in close proximity to cows. These results suggest that the aerosol sequences did not originate from manure. Large volumes of aerosols would be required to determine if bacterial sequences from aerosols could be used to track bacteria in manure to crops grown in proximity.  相似文献   

18.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

19.
Biogas technology provides an alternative source of energy to fossil fuels in many parts of the world. Using local resources such as agricultural crop remains, municipal solid wastes, market wastes and animal waste, energy (biogas), and manure are derived by anaerobic digestion. The hydrolysis process, where the complex insoluble organic materials are hydrolysed by extracellular enzymes, is a rate-limiting step for anaerobic digestion of high-solid organic solid wastes. Biomass pretreatment and hydrolysis are areas in need of drastic improvement for economic production of biogas from complex organic matter such as lignocellulosic material and sewage sludge. Despite development of pretreatment techniques, sugar release from complex biomass still remains an expensive and slow step, perhaps the most critical in the overall process. This paper gives an updated review of the biotechnological advances to improve biogas production by microbial enzymatic hydrolysis of different complex organic matter for converting them into fermentable structures. A number of authors have reported significant improvement in biogas production when crude and commercial enzymes are used in the pretreatment of complex organic matter. There have been studies on the improvement of biogas production from lignocellulolytic materials, one of the largest and renewable sources of energy on earth, after pretreatment with cellulases and cellulase-producing microorganisms. Lipids (characterised as oil, grease, fat, and free long chain fatty acids, LCFA) are a major organic compound in wastewater generated from the food processing industries and have been considered very difficult to convert into biogas. Improved methane yield has been reported in the literature when these lipid-rich wastewaters are pretreated with lipases and lipase-producing microorganisms. The enzymatic treatment of mixed sludge by added enzymes prior to anaerobic digestion has been shown to result in improved degradation of the sludge and an increase in methane production. Strategies for enzyme dosing to enhance anaerobic digestion of the different complex organic rich materials have been investigated. This review also highlights the various challenges and opportunities that exist to improve enzymatic hydrolysis of complex organic matter for biogas production. The arguments in favor of enzymes to pretreat complex biomass are compelling. The high cost of commercial enzyme production, however, still limits application of enzymatic hydrolysis in full-scale biogas production plants, although production of low-cost enzymes and genetic engineering are addressing this issue.  相似文献   

20.
Anaerobic co-digestion is effective and environmentally attractive technology for energy recovery from organic waste. Organic, agricultural and industrial wastes are good substrates for anaerobic co-digestion because they contain high levels of easily biodegradable materials. In this paper enhancement of biogas production from codigestion of whey and cow manure was investigated in a series of batch experiments. The influence of whey ratio on specific biogas production in a mixture with cow manure was analyzed at 35 and 55°C, for different initial pH values and for different concentrations of supplemental bicarbonate in experiments carried out over 12 days. Good biogas production (6.6 dm3/dm3), methane content (79.4%) in a biogas mixture and removal efficiencies for total solids (16%) were achieved at optimum process conditions (temperature of 55°C, 10% v/v of whey and 5 g/dm3 NaHCO3 in the initial mixture). In order to validate optimized conditions for co-digestion of whey and cow manure in the one-stage batch process, the experiments were performed within 45 days. The high biogas production (21.8 dm3/dm3), a good methane content (78.7%) in a biogas mixture as well as maximum removal efficiencies for total solids (32.3%), and chemical oxygen demand (56.3%), respectively indicate that whey could be efficiently degraded to biogas in a onestage batch process when co-digested with cow manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号